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PREFACE

The methods of progress in theoretical physics have undergone a vast change
during the Twentieth Century. The classical tradition has been to consider
the world to be an association of observable objects (particles, �uids, �elds, &c.)
moving about according to de�nite laws of force, so that one could form a mental
picture in space and time of the whole scheme. This led to a physics whose
aim was to make assumptions about the mechanism and forces connecting these
observable objects, to account for their behaviour in the simplest possible way.
It has become increasingly evident in recent times, however, that nature works
on a di�erent plan. Her fundamental laws do not govern the world as it
appears in our mental picture in any very direct way, but instead they control
a substratum of which we cannot form a mental picture without introducing
irrelevancies. The formulation of these laws requires the use of the mathematics
of transformations. The important things in the world appear as the invariants
(or more generally the nearly invariants, or quantities with simple transformation
properties) of these transformations. The things we are immediately aware of are
the relations of these nearly invariants to a certain frame of reference, usually one
chosen so as to introduce special simplifying features which are unimportant from
the point of view of general theory.

The growth of the use of transformation theory, as applied �rst to relativity
and later to the quantum theory, is the essence of the new method in theoretical
physics. Further progress lies in the direction of making our equations invariant
under wider and still wider transformations. This state of a�airs is very satisfactory
from a philosophical point of view, as implying an increasing recognition of the part
played by the observer introducing the regularities that appear in the observations,
and a lack of arbitrariness in the ways of nature, but it makes things less easy for
the learner of physics. The new theories, if one looks apart from their mathematical
setting, are built up from physical concepts which cannot be explained in terms of
things previously known to the student, which cannot even be explained adequately
in words at all. Like the fundamental concepts (e.g. proximity, identity) which
every one must learn on one's arrival into the world, the newer concepts of physics
can be mastered only by long familiarity with their properties and uses.

From the mathematical side the approach to the new theories presents no
di�culties, as the mathematics required (at any rate that which is required for
the development of physics up to the `early Twentieth Century') is not essentially
di�erent from what had been current for a considerable time. Mathematics is
the tool specially suited for dealing with abstract concepts of any kind and there
is no limit to its power in this �eld. For this reason a book on the new physics,
if not purely descriptive of experimental work, must be essentially mathematical.
All the same the mathematics is only a tool and one should learn to hold the
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physical ideas in one's mind without reference to the mathematical form. In this
book I have tried to keep the physics to the forefront, by beginning with an entirely
physical chapter and in the later work examining the physical meaning underlying
the formalism wherever possible. The amount of theoretical ground one has to
cover before being able to solve problems of real practical value is rather large, but
this circumstance is an inevitable consequence of the fundamental part played by
transformation theory and is likely to become more pronounced in the theoretical
physics of the future.

With regard to the mathematical form in which the theory can be presented,
an author must decide at the outset between two methods. There is the symbolic
method, which deals directly in an abstract way with the quantities of fundamental
importance (the invariants, &c., of the transformations) and there is the method
of co-ordinates or representations, which deals with sets of numbers corresponding
to these quantities. The second of these has usually been used for the presentation
of quantum mechanics (in fact it has been used practically exclusively with
the exception of Weyl's book Gruppentheorie und Quantenmechanik.) It is known
under one or other of the two names `Wave Mechanics' and `Matrix Mechanics'
according to which physical things receive emphasis in the treatment, the states
of a system or its dynamical variables. It has the advantage that the kind of
mathematics required is more familiar to the average student, and also it is
the historical method.

The symbolic method, however, seems to go more deeply into the nature
of things. It enables one to express the physical laws in a neat and concise way, and
will probably be increasingly used in the future as it becomes better understood
and its own special mathematics gets developed. For this reason I have chosen
the symbolic method, introducing the representatives later merely as an aid to
practical calculation. This has necessitated a complete break from the historical
line of development, but this break is an advantage through enabling the approach
to the new ideas to be as direct as possible.

The second half of the book contains applications to all the main �elds in
which quantum mechanics has bee found useful. These applications all follow
strictly from the general assumptions of the �rst half, with the exception of those
of the last chapter, which gives a further theoretical development.

P. A. M. D.
ST JOHN'S COLLEGE, CAMBRIDGE
29 May 1930
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I. THE PRINCIPLE OF

SUPERPOSITION

1. Waves and Particles

In the application of classical electrodynamics to atomic phenomena one meets
with di�culties of a very fundamental nature, which show that the classical theory
is irreconcilable with the facts. For instance, it is quite hopeless on the basis of
classical ideas to try to account for the remarkable stability of atoms and molecules
that is required in order that substances may have de�nite physical and chemical
properties. These di�culties have necessitated a modi�cation of some of the most
fundamental laws of nature and have led to a new system of mechanics, called
quantum mechanics, since its most surprising (although not its most important)
di�erences from the old mechanics apparently show a discontinuity in certain
physical processes and a discreteness in certain dynamical variables.

Classical electrodynamics forms a self-consistent and very elegant theory,
and one might be inclined to think that no modi�cation of it would be possible
which did not introduce arbitrary features and completely spoil its beauty. This is
not so, however, since quantum mechanics, after passing through many stages and
having its fundamental concepts changed more than once, has now reached a form
in which it can be based on general laws and is, although not yet quite complete,
even more elegant and pleasing than the classical theory in those problems with
which it deals. This is brought about by the fact that the changes made in
the classical theory are very few in number, although they are of a fundamental
nature and involve the introduction of entirely new concepts, and are such that
practically all the features of the classical theory to which it owes its attractiveness
can be taken over unchanged into the new theory.

The necessity for a fundamental departure from the laws and concepts of
classical mechanics is seen most clearly by a consideration of experimentally
established facts on the nature of light. On the one hand the phenomena of
interference and di�raction can be explained only on the basis of a wave theory
of light; on the other, phenomena such as photo-electric emission and scattering

1



2 I. THE PRINCIPLE OF SUPERPOSITION

by free electrons show that light is composed of small particles, which are called
photons, each having a de�nite energy and momentum depending on the frequency
of the light. These photons appear to have just as real an existence as electrons,
or any other particles known in physics. A fraction of a photon is never observed,
so that we may safely assume it cannot exist.

To obtain a consistent theory of light which shall include interference and
di�raction phenomena, we must consider the photons as being controlled by waves,
in some way which cannot be understood from the point of view of ordinary
mechanics. This intimate connexion between waves and particles is of very great
generality in the new quantum mechanics. It occurs not only in the case of light.
All particles are connected in this way with waves, which control them and give rise
to interference and di�raction phenomena under suitable conditions. The in�uence
of the waves on the motion of the particles is less noticeable the more massive
the particles and only in the case of photons, the lightest of all particles, is it
easily demonstrated.

The waves and particles should be regarded as two abstractions which are
useful for describing the same physical reality. One must not picture this reality as
containing both the waves and particles together and try to construct a mechanism,
acting according to classical laws, which shall correctly describe their connexion
and account for the motion of the particles. Any such attempt would be quite
opposed to the principles by which modern physics advances. What quantum
mechanics does is to try to formulate the underlying laws in such a way that
one can determine from them without ambiguity what will happen under any
given experimental conditions. It would be useless and meaningless to attempt
to go more deeply into the relations between waves and particles than is required
for this purpose.

2. The polarization of photons

Although the idea of a physical reality being describable by both particles
and waves, which are connected in some curious manner, is of far-reaching
importance and wide applications, yet it is only a special case of a much
more general principle, the Principle of Superposition. This principle forms
the fundamental new idea of quantum mechanics and the basis of the departure
from the classical theory. In order to lead up to an explanation of this
principle, we shall �rst take a very simple special case of it, which is provided
by a consideration of the polarization of light. It is known experimentally
that when plane-polarized light is used for ejecting photo-electrons, there is
a preferential direction for the electron emission. Thus the polarization properties
of light are closely connected with its corpuscular properties and one must ascribe



2. The polarization of photons 3

a polarization to the photons. One must consider, for instance, a beam of light
plane polarized in a certain direction as consisting of photons each of which is plane
polarized in that direction and a beam of circularly polarized light as consisting of
photons each circularly polarized. Every photon is in a certain state of polarization,
as we shall say. The di�culty is now how we are to �t in these ideas with the known
facts about the resolution of light into polarized components and the recomposition
of these components.

Suppose, for instance, that we have a beam of plane-polarized light passing
through a polariscope and getting resolved into two components polarized at
angles of α and α + ½π with the direction of polarization of the incident beam.
The intensities of the two components will be, according to classical optics,
respectively cos2 α and sin2 α times that of the original beam. Let us say that
a photon of the original beam is in the state of polarization 0 and a photon in one
or other of the two components is in the state α or α+½π respectively. The question
that now arises is: What must we consider happens to each individual photon when
it reaches the polariscope? How do the photons in the state 0 change into photons
in the states α and α + ½π?

This question cannot be answered without the help of an entirely new concept
which is quite foreign to classical ideas. We shall therefore �rst consider
another question of a di�erent type, namely, what will be the result of any
particular experiment which one may perform to try to determine what happens to
an individual photon when it reaches the polariscope. It is only questions of this
type that are really important, and quantum mechanics always gives a de�nite
answer to them. Any answer that may be given to our �rst question, i.e. any
description of the whole course of a photon during the experiment, would be simply
a device to help us to remember the results of the experiments. We ought not to be
surprised if no such description based on classical ideas is possible.

The most direct experiment of this kind would be to use an incident beam
consisting of only a single photon and then to measure the energy in each of the
two components. The result predicted by quantum mechanics is that sometimes
one would �nd the whole of the energy in one component and the other times
one would �nd the whole in the other component. One would never �nd part of
the energy in one and part in the other. Experiment can never reveal a fraction
of a photon. If one did the experiment a large number of times, one would �nd
in a fraction cos2 α of the total number of times that the whole of the energy
is in the α-component and in a fraction sin2 α that the whole of the energy is
in the (α + ½π)-component. One may thus say that a photon has a probability
cos2 α of appearing in the α-component and a probability sin2 α of appearing in
the (α + ½π)-component. These values for the probabilities lead to the correct
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classical distribution of energy between the two components when the number of
photons in the incident beam is large.

Thus the individuality of the photon is preserved in all cases, but only at
the expense of determinacy. The result of an experiment is not determined, as it
would be according to the classical theory, by the conditions under the control
of the experimenter. The most that can be predicted is the probability of
occurrence of each of the possible results. This lack of determinacy, which
runs through the whole of quantum mechanics and is in stark contradiction to
the classical theory, may at �rst sight appear to be unsatisfactory, as implying
a departure from the law of causality. It should be remarked, though, that
if one makes any experimental arrangement to observe the energy of one of
the components (e.g. by re�ection by a movable mirror and measurement of
the recoil momentum communicated to the mirror), it will always be impossible
subsequently to recombine the two components to produce interference e�ects.
The observation must inevitably produce, as we shall see from the general
laws of quantum mechanics, a change in phase of uncertain and unpredictable
amount. One may therefore, as has been pointed out by Niels Bohr,* ascribe
the lack of determinacy in the result to the uncertainty in the disturbance which
the observation necessarily makes, although one cannot inquire closely into how it
comes about. The apparent failure of causality is from this point of view due to
a theoretically necessary clumsiness in the means of observation.

We must now consider the answer to our �rst question and give a description
of the photon throughout the course of the experiment. A description consisting
of a continuous picture in the classical sense is not possible. The description which
quantum mechanics allows us to give is merely a manner of speaking which is of
value in helping us to deduce and to remember the results of experiments and
which never leads to wrong conclusions. One should not try to give too much
meaning to it.

It is necessary to suppose a peculiar relationship to exist between the di�erent
states of polarization, which is such that when, for instance, a photon is in
the state 0, it may be considered as being partly in the state α and partly
in the state α + ½π. Similarly it could be considered as partly in state β and
partly in state β + ½π, where β is any other angle of polarization, or as partly in
the state of left-circular polarization and partly that of right-circular polarization.
More generally, one could consider it partly in each of two states plane polarized
in two directions that are not at right angles, though this is seldom convenient,
or one could consider it partly in each of more than two states. There are thus
many ways of describing the photon, which are all always permissible and equally

*See the article by Bohr, N. The Quantum Postulate and the Recent Development of Atomic
Theory1. Nature 121, 580�590 (1928). https://doi.org/10.1038/121580a0
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good theoretically, although, of course, the one that says the photon is entirely
in state 0 is simpler than those that say it is `distributed' over two or more
states. When we say that the photon is distributed over two or more given states
the description is, of course, only qualitative, but in the mathematical theory
it is made exact by the introduction of numbers to specify the distribution, which
determine the weights with which the di�erent states occur in it.

One cannot picture in detail a photon being partly in each of two states; still less
can one see how this can be equivalent to its being partly in each of two other
di�erent states or wholly in a single state. We must, however, get used to the new
relationships between the states which are implied by this manner of speaking and
must build up a consistent mathematical theory governing them.

In our polarizing experiment, if we choose to consider the incident photon as
being partly in state α and partly in state α+ ½π, the action of the polariscope is
then quite simple. It separates the two components α and α+ ½π into two distinct
beams, so that after the photon has passed through we must say that it is partly
in one beam with the polarization α and partly in the other with the polarization
α+ ½π. There is now no way of saying the photon is wholly in one state, without
a generalization of the meaning of a state, which will be made later. The simplest
description is the one just given, in which the photon is distributed over two
states. Other possible descriptions would require the photon to be distributed
over three or more states; e.g. one could say it is partly in the �rst beam with the
polarization α, partly in the second beam with the polarization β (arbitrary), and
partly in the second beam with the polarization β + ½π. Such descriptions would
not, however, be of value unless the beams were subsequently passed through other
polarizing instruments.

Let us consider now what happens when we determine the energy in one of the
components. The result of such a determination must be either the whole photon
or nothing at all. Thus the photon must change suddenly from being partly in
one beam and partly in the other to being entirely in one of the beams. This
sudden change may be counted as due to the disturbance of the photon which
the observation necessarily makes. It is impossible to predict in which of the two
beams the photon will be found. Only the probability of either result can be
calculated from the previous distribution of the photon over the two beams.

This way of describing the photon during the course of the experiment leads to
one important conclusion, namely, the above-mentioned circumstance that when
once the energy in one of the components has been determined, it will be impossible
subsequently to bring about interference between the two components. When
the photon is partly in one beam and partly in the other, if the two beams are
superposed interference can take place, as the mathematical theory will show. This
possibility disappears when the photon is forced entirely into one of the beams by
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the energy observation. The other beam then no longer enters into the description
of the photon, so that if any experiment is subsequently performed on the same
photon it will count as being entirely in the one beam in the ordinary way.

We have obtained a description of the photon throughout the experiment, which
rests on a new rather vague idea of a photon being partly in one state and partly in
another. The reader may, perhaps, feel that we have not really solved the di�culty
of the con�ict between the waves and the corpuscles, but have merely talked about
it in a certain way and, by using some of the concepts of waves and some of
corpuscles, have arrived at a formal account of the phenomena, which does not
really tell us anything that we did not know before. The di�culty of the con�ict
between the waves and corpuscles is, however, actually solved as soon as one can
give an unambiguous answer to any experimental question. The only object of

theoretical physics is to calculate results that can be compared with experiment,
and it is quite unnecessary that any satisfying description of the whole course of
the phenomena should be given.

With regard to the objection that the present description does not seem to take
us any farther than we could, perhaps, have gone with very hazy notions of the
relations between photons and electromagnetic waves, such as, for instance, those
one had before the discovery of quantum mechanics, it should be remarked that
the conclusion obtained above, that when once the energy of one of the beams has
been measured subsequent interference between the beams would be impossible,
could not have been drawn from very hazy notions, and also that the present
discussion is really too qualitative for the advantages of the new theory to show
up clearly. In �5 the discussion on the nature of light will be renewed on a slightly
more quantitative basis, which will bring out de�nitely the di�erence between
the present theory and the previous hazy notions. For many elementary optical
experiments, moreover, the hazy notions would su�ce to give answers to questions
concerning the results of observations and in such cases quantum mechanics would
not give any further information. The object of quantum mechanics is to extend
the domain of questions that can be answered and not to give more detailed answers
than can be experimentally veri�ed.

3. Superposition and Indeterminacy

The new ideas that we have introduced in our description of the photon must be
extended and applied to any atomic system, i.e. to any set of electrons and atomic
nuclei interacting with each other and perhaps also with photons. We must �rst
generalize the meaning of a `state' so that it can apply to any atomic system.
Corresponding to the case of the photon, which we say is in a given state of
polarization when it has been passed through suitable polarizing apparatus, we say
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that any atomic system is in a given state when it has been prepared in a given way,
which may be repeated arbitrarily at will. The method of preparation may then
be taken as the speci�cation of the state. The state of a system in the general
case includes any information that may be known about its position in space
from the way in which it was prepared, as well as any information about its
internal condition.

We must now imagine the states of any system to be related in such a way
that whenever the system is de�nitely in one state, we can equally well consider
it as being partly in each of two or more other states. The original state must
be regarded as the result of a kind of superposition of the two or more new
states, in a way that cannot be conceived on classical ideas. Any state may
be considered as the result of a superposition of two or more other states, and
indeed in an in�nite number of ways. Conversely any two or more states may be
superposed to give a new state, even also when they refer to di�erent positions of
the system in space. Thus in our previous example of the polarization experiment,
when the photon is partly in the one beam with the polarization α and partly in
the other with the polarization α+ ½π, we may still count it as being entirely in a
certain single state. In fact it still satis�es the de�nition of having been prepared
in a de�nite way which may be repeated at will.

When a state is formed by the superposition of two other states, it will
have properties that are in a certain way intermediate between those of the two
original states and that approach more or less closely to those of either of them
according to the greater or less `weight' attached to this state in the superposition
process. The new state is completely de�ned by the two original states when their
relative weights in the superposition process are known, together with a certain
phase di�erence, the exact meaning of weights and phases being provided in
the general case by the mathematical theory of the next chapter. In the case
of the polarization of a photon their meaning is that provided by classical optics,
e.g. when two perpendicularly plane polarized states are superposed with equal
weights, the new state may be circularly polarized in either direction, or linearly
polarized at an angle ¼π, or else elliptically polarized, according to the phase
di�erence. This, of course, is true only provided the two states that are superposed
refer to the same beam of light, i.e. all that is known about the position and
momentum of a photon in either of these states must be the same for each.

It is convenient at this stage to modify slightly the meaning of the word
`state' and to make it more precise. We must regard the state of a system as
referring to its condition throughout an inde�nite period of time and not to its
condition at a particular time, which would make the state a function of the
time. Thus a state refers to a region of 4-dimensional space-time and not to a
region of 3-dimensional space. A system, when once prepared in a given state,
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remains in that state so long as it remains undisturbed. This does not, of course,
imply that it is not undergoing changes which could be revealed by experiment.
In general it will be following out a de�nite course of changes, predictable by
the quantum theory, belonging to that state. It is sometimes purely a matter of
convenience whether we are to regard a system as being disturbed by a certain
outside in�uence, so that its state gets changed, or whether we are to regard the
outside in�uence as forming part of and coming in the de�nition of the system,
so that with the inclusion of the e�ects of this in�uence it is still merely running
through its course in one particular state. An illustration of this is our previous
example of a photon being passed through a polariscope and becoming partly in
each of two beams. Either we may consider the polariscope as disturbing the
photon, so that after it has passed through it is in a di�erent state; or else we may
consider the polariscope as forming part of the `�eld' in which the photon is moving,
so that it is in the same state when it is in the incident beam as later when it is
partly in each of the two component beams, and it is just following out its course in
that state. The general laws of quantum mechanics apply equally well for either of
these meanings of the state. There are, however, two cases when we are in general
obliged to consider the disturbance as causing a change in state of the system,
namely, when the disturbance is an observation and when it consists in preparing
the system so as to be in a given state.

With the new space-time meaning of a state we need a corresponding space-time
meaning of an observation. This requires that the speci�cation of an observation
shall include a de�nite time at which the observation is to be made, or at which
the apparatus used in making the observation is to be set in motion, relatively to
the time when the system was prepared. It should be noticed that it has a meaning
to consider an observation being made on a system in a given state before this state
is prepared. If the system is prepared at time t0, so that after time t0 it is in a given
state, we can imagine what it would have to be like before time t0 in order that,
if left undisturbed, it may become in the given state after time t0. Thus we can
imagine the given state being produced backwards in time and can give a meaning
to an observation being made before time t0 on the system in this state.

The introduction of indeterminacy into the results of observations, which
we had to make in our discussion of the photon, must now be extended to
the general case. When an observation is made on any atomic system that has
been prepared in a given way and is thus in a given state, the result will not
in general be determinate, i.e. if the experiment is repeated several times under
identical conditions several di�erent results may be obtained. If the experiment
is repeated a large number of times it will be found that each particular result
will be obtained a de�nite fraction of the total number of times, so that one can
say there is a de�nite probability of its being obtained any time the experiment
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is performed. This probability the theory enables one to calculate. In special
cases this probability may be unity and the result of the experiment is then
quite determinate.

The indeterminacy in the results of observations is a necessary consequence of
the superposition relationships that quantum mechanics requires to exist between
the states. Suppose that we have two states A and B such that there exists
an observation which, when made on the system in state A, is certain to lead to
one particular result, and when made on the system in state B, is certain not
to lead to this result. Two such states we call orthogonal. Suppose now that this
observation is made on the system in a state formed by superposition of A and B.
It is impossible for the result still to be determinate (except in the special case
when the weight of A or B in the superposition process is zero). There must
be a �nite probability p that the result, that was certain for state A, will now be
obtained and a �nite probability 1−p that it will not be obtained. By continuously
varying the relative weights in the superposition process we can get a continuous
range of states, extending from pure A to pure B, for which the probability of
the result, that was certain for state A, being obtained varies continuously from
unity to zero.

It was mentioned above that an observation is not speci�ed unless the time
when it is made is given. In special cases it may so happen that the result
of the observation, or the probability of any particular result being obtained,
is independent of this time. If the state of the system is such that this is so
for every observation that could be made on the system, then the state is said
to be a stationary state and we should picture it as one in which the conditions
are not varying.

The possibility in quantum mechanics of superposing states to get new states
is connected with the fact that in the mathematical theory the equations that
de�ne a state are linear in the unknowns. It is not unnatural that one should
try to establish analogies with systems in classical mechanics (such as vibrating
strings or membranes), which are governed by linear equations and for which,
consequently, a superposition principle holds. Such analogies have led to the
name `Wave Mechanics' being sometimes given to quantum mechanics. It must be
emphasized, however, that the superposition that occurs in quantum mechanics
is of an essentially di�erent nature from that occurring in the classical theory.
The analogies are therefore very misleading. Their inadequacy may be seen
from the following special case. Suppose one compares the states of an atomic
system with the states of vibration of a membrane. If one superposes any state
of the vibrating membrane with itself, the result is a new state of double the
amplitude. On the other hand, if one superposes an atomic state with itself
according to quantum mechanics, the resulting state will be precisely the same
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as the original one. There is nothing in the atomic case that is analogous to
the absolute value of the amplitude, as distinct from the relative amplitudes of
di�erent points, of the vibrating membrane.

4. Compatibility of Observations

In general a system is disturbed when an observation is made on it, so that after
the observation it is no longer in the same state as before. Only when the initial
state and the observation are such that there is a probability unity, i.e. a certainty,
for one particular result is it possible that the observation may produce no change
of state. The necessity for this conclusion may be seen from the following argument.

Suppose that there is a probability p for a given result being obtained from
the observation. Consider one occasion on which this result was actually found
and suppose the observation was repeated immediately afterwards on the system
in the state in which it was left by the �rst observation. There must have been
a probability unity for the given result being obtained a second time, since we may
assume the system could not have changed in the in�nitely short time between the
two observations. Thus while the �rst state is such that there is a probability p for
a given result from a certain observation, the second state (i.e. the one in which
the system was left by the �rst observation) is such that there is a probability unity
for this same result from a practically equivalent observation. Hence the second
state must di�er from the �rst when p di�ers from unity, since the probability of
a result is quite de�nite for each state. It must be understood that the second
state here considered is the one that arose on that particular occasion referred to
above when the �rst observation was found to give the particular result desired.
There will be a di�erent second state corresponding to each di�erent result for
this observation. They must all be di�erent from the initial state when p di�ers
from unity.

Hence when once an observation of a system in a given state has been made,
one cannot in general make a second observation and suppose it to apply to
the same state. The �rst observation spoils the state of the system, which must
then be prepared again before one can make the second. The two observations
may, however, be such that, although the �rst one alters the state of the system,
yet it does so in such a way as not to make any di�erence to the probability of any
given result being obtained with the second. By the probability of a given result
being obtained with the second is here meant its probability at the beginning
of the experiment, before one knows what the result of the �rst observation is,
and not its probability after a particular result has been obtained with the �rst
observation. Two observations for which this is so when they are made (or at least
when the �rst is made) with the minimum of disturbance allowed by theory, which
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can be attained in practice only under the most favourable conditions, are called
compatible. Three or more observations are called compatible when any two are
compatible. Two or more observations may be compatible only with respect to
one particular state as initial state before any of the observations, or they may
be compatible with respect to all initial states. In future when it is said that two
or more observations are compatible, the second alternative is to be understood
unless the contrary is stated.

The condition for the compatibility of two observations is, according to the laws

of quantum mechanics, a symmetrical condition between them. If one of two
compatible observations, α1 say, is made at the time t1 and the other, α2 say,
at the time t2 which is later than t1, then, according to the de�nition given above,
the probability of a given result being obtained for α2 must be the same whether
this observation is made on the system in the initial state or in the state ensuing
after observation α2. The symmetry condition now requires that the probability of
a given result being obtained for α1 must be the same whether this observation α1

is made on the system in the initial state or in the state ensuing after observation
α2, it being necessary to suppose this latter state, which is prepared at time t2,
to be produced backwards in time, in the way mentioned in the preceding section,
in order that the observation α1 at time t1 may be made on it. By the probability
of a result for the state ensuing after a certain observation, is meant in each case
the average probability for each state that can ensue after this observation, each
of these states being weighted in the averaging process with the probability that
it does ensue after this observation.

It has been pointed out that the state of a system after any observation has
been made on it is such that this observation, if made on the system in this �nal
state, would for a certainty give one particular result. Suppose now that a number
of compatible observations α1, α2, . . . are made on the system. Then the �nal state
must be such that, if any of the observations αr is made on the system in this �nal
state, there will be a certainty for one particular result, since there was a certainty
for one particular result as soon as the observation αr was made in the preparation
of the �nal state, and this will not be a�ected by the subsequent observations αr+1,
αr+2, . . . , owing to the compatibility condition. The existence of states for which
the result of any of the observations is a certainty forms one of the main properties
of compatible observations. The order of the observations necd not, of course, be
their order in time, since we are allowed to consider an observation being made on
a state before it is prepared.

The case of greatest interest of the compatibility of two observations is when
they both refer to the same instant of time. The compatibility condition is now
that if either is made a very short time before the other, the probability of any
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given result being obtained with the second shall be the same as if the �rst had
not becn made.

It is often convenient to count two or more compatible observations,
particularly when they are simultaneous, as a single observation, the result
of such an observation being expressible by two or more numbers. We shall
frequently have to consider the greatest possible number of independent compatible
simultaneous observations being made on a system and shall, for brevity, call such
a set of observations a maximum observation. When a maximum observation is

made on a system, its subsequent state is completely determined by the result of

the observation and is independent of its previous state. This may be considered
as an axiom, or as a more precise de�nition of a state.

The state of a system after a maximum observation has been made on it is
such that there exists a maximum observation (namely, an immediate repetition
of the maximum observation already made) which, when made on the system in
this state, will for a certainty lead to one particular result (namely, the previous
result over again). Any state can be speci�ed only as the state ensuing after a given
maximum observation has been made for which a given result was obtained, or
in some equivalent way. We can therefore draw the conclusion that for any state
there must exist one maximum observation which will for a certainty lead to one
particular result, and conversely, if we consider any possible result of a maximum
observation, there must exist a state of the system for which this result for the
observation will be obtained with certainty.

5. Further Discussion on Photons

When quantum mechanics is applied to a system composed of simply a freely
moving corpuscle, the equations that de�ne a state of the system are, as we shall
�nd from the mathematical theory, the ordinary equations for wave motion. It is
this circumstance that gives to the corpuscle many of the properties of waves and
allows us to consider a corpuscle in a given state as associated with, or controlled
by, a given wave. In order to show more de�nitely the nature of the relations
between the waves and the corpuscle, a typical example will be given of the con�ict
between the wave and the corpuscular theories of light and of the solution which
quantum mechanics provides.

Consider a beam of light to be split into two components of equal intensity,
which are made to interfere. According to the old corpuscular theory we would
say that each of the two components contains an equal number of photons and
we should then require that a photon in one component could interfere with one in
the other. Under certain conditions they would have to annihilate one another, and
under others to produce four photons. This contradicts the idea of photons being
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discrete particles and is, besides, in disagreement with the conservation of energy,
which should hold for each process in detail and not be merely statistically true.

The answer that quantum mechanics gives to the di�culty is that one should
consider each photon to go partly into each of the two components, in the
way allowed by the idea of the superposition of states. Each photon then
interferes only with itself. Interference between two di�erent photons can never
occur. The solution of Maxwell's equations that forms the wave picture of the
phenomenon represents one of the photons and not the whole assembly of photons.
The relative intensities that this solution gives for the light at di�erent points
determine the relative probabilities of that photon being found at these points
when an experiment is made to �nd its position. Only the relative intensities at
di�erent points are of importance; the absolute intensity has no interpretation.
One must not try to establish any connexion between the absolute intensity of the
waves and the total number of particles, which is in stark constrast� to the older
ideas of the relations between waves and particles.

The quantum-mechanical views do not, of course, get over the di�culty of
enabling us to picture something having properties between those of waves and
corpuscles, but they serve to remind us, by their way of saying a photon is
partly in one component and partly in the other, of the close connexion between
the components and so prevent us from intuitively drawing wrong conclusions,
as we do on the older views when we picture each component as having its
own photons. For instance, we are reminded, by the requirement that the total
probability of a photon being anywhere must be and must remain unity, that in
whatever way the two component beams interfere, if they neutralize each other
in one place they must reinforce each other in another so that conservation of
energy is preserved. We thus get into no di�culty with the detailed conservation
of energy.

6. De�nition of Superposition

A de�nition of the superposition of states will now be given. We say that a state

A may be formed by a superposition of states B and C when, if any observation is

made on the system in state A leading to any result, there is a �nite probability for

the same result being obtained when the same observation is made on the system

in one (at least) of the two states B and C. The Principle of Superposition says
that any two states B and C may be superposed in accordance with this de�nition
to form a state A and indeed an in�nite number of di�erent states Amay be formed
by superposing B and C in di�erent ways. This principle forms the foundation

�Original:- sharp distinction
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of quantum mechanics. It is completely opposed to classical ideas, according to
which the result of any observation is certain and for any two states there exists
an observation that will certainly lead to two di�erent results.

From our de�nition of superposition some elementary theorems follow
immediately. For example, the states B and C themselves are particular cases of
states formed by superposition ofB and C. Again, if we superpose two statesA and
B obtaining a state P , which is then superposed on another state C, the resulting
state Q will have the property that, if any observation is made on the system in
this state leading to any result, there will be a �nite probability of this same result
being obtained when the observation is made on the system in one of the two
states P and C, and hence there must be a �nite probability of this result being
obtained when the observation is made on the system in one of the three states A,
B and C. Thus the property possessed by the state Q is symmetrical in the three
states A, B and C, so that when superpositions are made successively their order
is unimportant. This, of course, is necessary for the word `superposition' to be
suitable for describing the relations between the states.

Another example of a deduction from the de�nition of superposition is
the following: If an observation of the system in a state A is certain to lead to one
particular result and if this observation for another state B is certain to lead to
the same result, then the observation is also certain to lead to this result for any
state obtained by superposition of A and B. This is because it cannot lead to any
other result, as the probability of this other result for both the states A and B
is zero.

One could proceed to build up the theory of quantum mechanics on the basis of
these ideas of superposition with the introduction of the mimmum number of new
assumptions necessary. Although this would be the logical line of development,
it does not appear to be the most convenient one, as the laws of quantum mechanics
are so closely interconnected that it would not be easy, and would in any case
be somewhat arti�cial, to separate out the barest minimum of assumptions from
which the rest could be deduced. The method that will be here followed will
therefore be �rst to give all the simple general laws in the form in which they are
most easily expressed and remembered, and then to work out their consequences.
This will mean that we shall continually be deducing results that are obviously
necesary for the physical meaning of the theory to be tenable, or that follow from
the foregoing ideas of superposition. Such deductions wll then merely show the
reasonableness and self-consistency of our fundamental assumptions.



II. SYMBOLIC ALGEBRA OF

STATES AND OBSERVABLES

7. Addition of States

We introduce certain symbols which we say denote physical things such as states
of a system or dynamical variables. These symbols we shall use in algebraic
analysis in accordance with certain axioms which will be laid down. To complete
the theory we require laws by which any physical conditions may be expressed
by equations between the symbols and by which, conversely, physical results
may be inferred from equations between the symbols. A typical calculation
in quantum mechanics will now run as follows: One is given that a system
is in a certain state in which certain dynamical variables have certain values.
This information is expressed by equations involving the symbols that denote
the state and the dynamical variables. From these equations other equations are
then deduced in accordance with the axioms governing the symbols and from
the new equations physical conclusions are drawn. One does not anywhere specify
the exact nature of the symbols employed, nor is such speci�cation at all necessary.
They are used all the time in an abstract way, the algebraic axioms that they satisfy
and the connexion between equations involving them and physical conditions being
all that is required. The axioms, together with this connexion, contain a number
of physical laws, which cannot conveniently be analysed or even stated in any
other way.

We denote each state of a dynamical system by a symbol ψ. Di�erent states
may be distinguished by su�xes, e.g. ψ1, ψ2, ψ3. If a state ψ0, may be formed by
superposition of the states ψ1 and ψ2, we express this relation between the states
by an equation of the type

ψ0 = c1ψ1 + c2ψ2, (1)

where c1 and c2 are numbers, which may be imaginary or complex. The di�erent
states that may be formed by the superposition of ψ1 and ψ2 are given by di�erent
coe�cients c1, c2. Any two ψ-symbols denoting any two states may be added in

this way with arbitrary coe�cients c1 and c2 and the sum will always be another

15
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ψ-symbol denoting a state that can be formed by superposition of these two states,
except in the special case when this sum is zero. The usual algebraic axioms of
addition are assumed to hold, i.e. the commutative axiom

c1ψ1 + c2ψ2 = c2ψ2 + c1ψ1

and the associative axiom

(c1ψ1 + c2ψ2) + c3ψ3 = c1ψ1 + (c2ψ2 + c3ψ3).

The �rst of these axioms implies that superposition of two states is a symmetrical
process between them, which is obvious from the de�nition of �6, while the second
implies the theorem, which was proved in �6, that in successive superpositions
the order is unimportant.

Our assumptions so far are thus consistent with the de�nition of superposition.
They do, however, go farther than this de�nition and contain new physical laws.
For example, we can infer that if the state ψ0 may be formed by superposition of
ψ1 and ψ2 so that equation (1) holds, then (provided c1 6= 0) ψ1 may be formed
by superposition of ψ0 and ψ2. The condition of superposition (1) is, in fact,
symmetrical between ψ0, ψ1 and ψ2. This could not have been deduced from
the de�nition of superposition in �6. When three states are symmetrically related
in this way, we say that they are dependent. We can extend the de�nition and say
that any number of states ψ1, ψ2, . . . , ψn are dependent or independent according
to whether there is or is not a relation between them of the type

c1ψ1 + c2ψ2 + · · ·+ cnψn = 0. (2)

It has been mentioned that when a state is superposed on itself, the resulting
state is the same as the original one. Thus our symbolic scheme should be such
that ψ1+ψ1 or 2ψ1 denotes the same state as ψ1. Actually we make a more general
assumption than this, namely, that cψ1 denotes the same state as ψ1 where c is any
number, not zero, and can be imaginary or complex. The nature of the connexion
between the states and the symbols ψ required by this assumption may perhaps
be more easily understood if one pictures the ψ's as vectors in some space with
a su�ciently large number of dimensions. The number of dimensions required is
equal to the number of independent states that the system has, which is in general
in�nite. An equation of the type (1) or (2) can now be regarded as a vector
equation. The vectors are, of course, in general complex. A state must now be
considered as completely speci�ed by the direction of a vector. Vectors of di�erent
lengths and the same direction specify the same state.

We now introduce another set of symbols φ1, φ2, . . . also denoting states. Any
state denoted by a ψ-symbol ψr can be equally well denoted by a φ-symbol φr
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having the same su�x. When the ψ's that denote three states satisfy (1), the φ's
that denote these states are assumed. to satisfy

φ0 = c1φ1 + c2φ2, (3)

where the bar over a number denotes its conjugate complex. The φ's are also
assumed to satisfy the commutative and associative laws of addition and to have
all the other properties that the ψ's have, e.g. cφ1 denotes the same state as φ1,
and we may de�ne a number of states denoted by φ1, φ2, . . . , φn to be independent
when there is no relation between them of the type

c1φ1 + c2φ2 + · · ·+ cnφn = 0.

The theory will throughout be symmetrical between the φ's and ψ's. The sum of
a φ and a ψ has no meaning and will never appear in the analysis.

The introduction of a second set of symbols to denote the states may appear to
be super�uous, but actually it is necessary when one allows complex coe�cients cr
in order to preserve the symmetry between the two roots of −1. A superposition
process such as (1), which is speci�ed by the two complex numbers c1 and c2, must
be equally well speci�able by the conjugate complex numbers c1 and c2 so that we
are obliged to introduce equation (3) and treat it on the same footing as (1).

We have seen that a φ- or ψ-symbol may be multiplied by an arbitrary number
and then still denotes the same state. Thus we can put

ψr = arψ
∗
r , φs = bsφ

∗
s, (4)

where the a's and b's are arbitrary numbers, not zero, and consider the ψ∗'s and
φ∗'s as denoting the states instead of the ψ's and φ's. The a's and b's must,
however, satisfy certain conditions in order that the connexion between equations
(1) and (3) may hold also for the starred symbols. These equations give�

ψ∗0 = (c1a1/a0)ψ
∗
1 + (c2a2/a0)ψ

∗
2,

φ∗0 = (c1b1/a0)φ
∗
1 + (c2b2/b0)φ

∗
2.

In order that the coe�cients in the φ∗ equation may be conjugate complex to the
coe�cients in the ψ∗ equation we must have

b1/b0 = a1/a0 b2/b0 = a2/a0

Hence br = far (5)

where f is a number independent of r.

�Dirac uses a `.' to separate two factors when bracketed juxtaposition would be more clear.
Later the `.' is replaced by a `·'.
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The connexion between equations (1) and (3), and the condition (5) governing
the most general transformation (4) that preserves this connexion, lead one
to consider each φr as being proportional to the conjugate imaginary quantity of
the corresponding ψr, the proportionality becoming an equality if a transformation
of the type (4) & (5) is applied with the correct value for f . Thus if we adopt
the vector picture of the ψ's we may take each ψr to be the conjugate imaginary
vector to the corresponding φr. It should be remarked, though, that the conjugate
imaginariness of the ψ's and φ's is not of quite the same nature as that of ordinary
complex numbers, since we cannot give any meaning to the splitting up of a ψ
into its real and imaginary� parts. In the splitting up of an ordinary complex
quantity into its real and imaginary parts, we obtain the real part by taking
the average of the quantity itself and its conjugate imaginary, but we cannot
do this for a ψ-symbol since we are not allowed to add together a ψ and a φ.
Thus the relation between a ψ and the corresponding φ is not quite the same
as the relation between two conjugate imaginary numbers, and in order that
this di�erence may be remembered we shall reserve the words conjugate imaginary

for describing relations between ψ's and φ's and use the words conjugate complex

instead for quantities such as numbers which can be split up into real and imaginary
parts. Ordinary vectors, of course, like numbers, can be split up into real and
imaginary parts, so that the picturing of ψ's and φ's as vectors is not strictly
correct, although it is all the same sometimes useful. We must therefore remember,
when using the vector picture, that, in so far as it would allow one to add together
two vectors representing a ψ and a φ respectively, it is imperfect and gives to
the ψ's and φ's more properties than quantum mechanics requires or allows.

8. Multiplication of States

Up to the present the only functions of the ψ's and φ's that we have allowed
are linear functions of the ψ's alone, or of the φ's alone, with numerical
coe�cients. We now suppose that any ψ and φ have a product, which is a number,

in general complex. This product must always be written φψ, i.e. the φ must be

on the left-hand side and the ψ on the right. Products such as ψφ, ψ1ψ2 and φ1φ2

have no meaning and will never appear in the analysis.
The products φψ are assumed to satisfy the distributive axiom of

multiplication, i.e

(φ1 + φ2)ψ = φ1ψ + φ2ψ,

φ(ψ1 + ψ2) = φψ1 + φψ2,

}
(6)

�The `pure' is omitted by being unnecessary.
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together with the axiom that

φ(cψ) = (cφ)ψ = c(φψ), (7)

where c is any number. In the vector picture we can take the number φψ to be the
scalar product of the two vectors φ and ψ. The conditions (6) and (7) are then
satis�ed. The vector picture, however, allows us also to form the products φ1φ2

and ψ1ψ2. Thus we again �nd the vector picture giving more properties to the ψ's
and φ's than required in quantum mechanics.

In conformity with our view of regarding a ψ and the corresponding φ as
conjugate imaginary quantities, we now make the following two assumptions:

φrψs = φsψr, (8)

φrψr > 0. (9)

From the �rst of these, by taking s = r, we can deduce that φrψr is real. The second
now states that φrψr is positive. To examine the legitimacy of these assumptions,
let us consider the e�ect of a transformation of the type (4) & (5). Equation (8)
gives

farasφ
∗
rψ
∗
s = fasarφ∗sψ

∗
r

and the inequality (9) gives
farasφ

∗
rψ
∗
s > 0.

From these relations we obtain

φ∗rψ
∗
s = φ∗sψ

∗
r , φ∗rψ

∗
s > 0

provided f is real and positive. Thus a restriction must be imposed on
the transformations (4) & (5) in order that (8) and (9) may remain invariant.

In future we shall keep to the view that each φ is equal to, and not merely
proportional to, the conjugate imaginary of the corresponding ψ, as the more
general view, which is theoretically permissible, does not lead to anything of
interest. This means that our equations need be invariant under transformations
of the type (4) only provided br = ar, i.e. provided in (5) f = 1. The restriction
on the transformations of the type (4) which is necessary for (8) and (9) to be
invariant is included in this one.

We shall often assume that a ψr and the conjugate imaginary φr satisfy

φrψr = 1,

when they will be called normalized to unity, or simply normalized. The inequality
(9) shows that it is always possible to normalize a ψ or a φ by multiplying it by a
number. The modulus of this number is determined but not its argument.
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A corollary of (9) is that if, for all ψ

φrψ = 0,

then φr = 0.

}
(10)

This follows from the fact that if φr is not identically zero, its conjugate
imaginary ψr will be a ψ that does not satisfy φrψ = 0. There is, of course,
also the corresponding theorem with φ's and ψ's interchanged.

The theorem will now be proved that if φr and ψs are normalized, then

|φrψs| 6 1, (11)

the case of equality occurring only when φr and ψs denote the same state. Let a
be any real number and apply the inequality (9) to the state denoted by ψr−eiaψs
or φr − e−iaφs. This gives

(φr − e−iaφs)(ψr − eiaψs) > 0

or φrψr − eiaφrψs − e−iaφsψr + φsψs > 0.

Hence, using the normalizing conditions φrψr = φsψs = 1, we obtain

eiaφrψs + e−iaφsψr < 2.

The second term on the left-hand side is just the conjugate complex of the �rst.
Hence the real part of eiaφrψs is less than unity. Since this must hold for all values
of a we must have the modulus of φrψs less than unity. This gives the required
result (11), when we take into account the fact that the inequality becomes
an equality if ψr − eiaψs = 0 for some value of a, which means that ψr and ψs
denote the same state.

Our introduction of products of φ's with ψ's has so far been entirely
a mathematical question, with no physical implications. A physical meaning will
now be given to the product φrψs. Consider that maximum observation of the state
φr for which there is a certainty of a particular result being obtained. We have
seen that such a maximum observation always exists. Suppose now this maximum
observation to be made on the system in the state ψs. There will be a certain
probability of the same result being obtained, which we call the probability of

agreement of ψs with φr. It is a number that depends only on the two states ψs
and φr. In particular it is unity if ψs is the same state as φr. We now assume that
the probability of agreement of ψs with φr is equal to |ψsφr|2 when φr and ψs are
normalized. It has just been proved that this value for the probability can never
exceed unity, so that the assumption is reasonable. Again, the only transformation
of the type (4) that one can make on a normalized φ or ψ without destroying
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its normalization is multiplication by a number of modulus unity. This will not
change the value of |φrψs| which thus has the necessary invariance for its physical
meaning to be permissible.

When we give this physical meaning to the product of a φ and a ψ the axioms
and assumptions (6), (7), (8) & (9) become, to a certain extent, physical laws, as
physical consequences can now be deduced from them. For instance, from (8) one
can deduce that the probability of agreement of ψs with ψr equals that of ψr with
ψs. Again, from (6) and (7) one can calculate how the probability of agreement of
a state ψ0 with a state c1ψ1 +c2ψ2 formed by the superposition of ψ1 and ψ2 varies
with the coe�cients c1 and c2. Let us take the case when ψ1 and ψ2 are orthogonal,
i.e. when there exists an observation which is certain to lead to di�erent results for
the two states, so that their probability of agreement is zero. This requires that

φ1ψ2 = 0, φ2ψ1 = 0.

In order that c1ψ1 + c2ψ2 may be normalized as well as ψ1 and ψ2 we must have

1 = (c1φ1 + c2φ2)(c1ψ1 + c2ψ2)

= |c1|2 φ1ψ1 + |c2|2 φ2ψ2

= |c1|2 + |c2|2.

If we now take ψ0 orthogonal to ψ2, we �nd for the probability of agreement of ψ0

with c1ψ1 + c2ψ2 the value

|φ0(c1ψ1 + c2ψ2)|2 = |φ0c1ψ1|2 = |c1|2 |φ0ψ1|2

which is |c1|2 times the probability of agreement of ψ0 with ψ1. This result as it
stands is not a physical one, since we have no other physical meaning for |c1|2 which
we can equate to the ratio of the probability of agreement of ψ0 with c1ψ1 + c2ψ2

to that of ψ0 with ψ1. The fact that this ratio is independent of the state ψ0

provided it is orthogonal to ψ2 is, however, a physical result and is an example of
the physical conclusions contained in the axioms (6) and (7).

We see further that these axioms give physical meanings to the coe�cients
occurring in a superposition process, or at least to the squares of their moduli.
The simplest such physical meanings are obtained when we put ψ0 equal to ψ1

or ψ2 in the above example. This gives the result that |c1|2 is the probability of
agreement of c1ψ1 + c2ψ2 with ψ1 and |c2|2 is that of c1ψ1 + c2ψ2 with ψ2. The sum
of these two probabilities of agreement is unity, as could have been inferred from
the de�nition of superposition of �6. We may call |c1|2 and |c2|2 the weights with
which ψ1 and ψ2 occur in the superposition process. The state c1ψ1 + c2ψ2 is not
completely determined by these weights, as a phase factor, namely, the argument
of c1/c2 is also necessary. This phase has no such simple physical meaning as
the weights.
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9. Algebra of Observables

We must now introduce dynamical variables into the analysis. In classical
mechanics a dynamical variable, for any state of the system, is given by a particular
function of the time and is thus something that refers to all times. In the quantum
theory a dynamical variable is no longer given by an ordinary function of the time,
although it must still be something that refers to all times if it is to be the analogue
of a classical dynamical variable. In quantum mechanics it is more convenient
to deal with something that refers to one particular time instead of to all times,
analogous to the value of a classical variable at a particular instant of time.
We shall call such a quantity an observable. We can now say, in both classical
and quantum mechanics, that any observation consists in measuring an observable
and the result of such an observation is a number. The measurement of a dynamical
variable for a particular state would in the classical theory give as result a function
of the time and would in the quantum theory in general have no meaning.

We now denote each observable by a symbol. Thus the value of a Cartesian
co-ordinate of an electron at a particular time t1 would be an observable and could
be denoted by the symbol x(t1). A dynamical variable, such as x(t), may be
regarded as an observable that depends on a parameter t which denotes the time.
The symbols that denote observables will be used in the analysis along with
the symbols that denote states, in accordance with certain rules and axioms that
will now be given.

Any symbol α denoting an observable can be multiplied into any symbol ψ
denoting a state, giving a product, which must be written αψ with the ψ factor

on the right-hand side. This product is of the nature of a ψ and thus denotes

a state and can be added to other ψ's. In the vector picture of the ψ's we should
say that an observable α is an operator which can be applied to any vector ψ
to give another vector αψ. We assume the distributive axiom of multiplication,
i.e.

α(ψ1 + ψ2) = αψ1 + αψ2 (12)

and we also assume
α(cψ) = c(αψ) (13)

where c is any number. In the vector picture this means that the operator α
is a linear operator and thus consists of rotations and uniform extensions or
compressions applied to the vector �eld. The multiplication of the ψ's by a number
is an operation on them which satis�es these conditions, so that an ordinary
number may be regarded as a special case of an observable. Its physical meaning
will be discussed later (see �11).

If an observable α is such that αψ = 0 for all ψ, then we assume that α = 0.
This means that an observable is completely determined when its product with
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an arbitrary ψ is given, since if we have two observables whose product with
an arbitrary ψ is the same, their di�erence must vanish. We now de�ne the sum
α1 + α2 of two observables α1 and α2 by the condition

(α1 + α2)ψ = α1ψ + α2ψ (14)

for all ψ. The commutative and associative laws for the addition of observables
follow at once from this de�nition and from the corresponding laws for the addition
of ψ-symbols. We further de�ne the product α1α2 of two observables α1 and α2

by the condition
(α1α2)ψ = α1(α2ψ) (15)

for all ψ. The associative and distributive laws for the multiplication of observables
follow at once from the de�nition, e.g. for the associative law we have

[(α1α2)α3]ψ = (α1α2)(α3ψ) = α1[α2(α3ψ)]

= α1[(α2α3)ψ] = [α1(α2α3)]ψ

and since this holds for all ψ we must have

(α1α2)α3 = α1(α2α3),

However, the commutative law for the multiplication of observables in general does

not hold, i.e. in general α1α2 is not equal to α2α1. In the special case when α1α2

is equal to α2α1, we say that α1 commutes with α2 or that α1 and α2 commute.
We say that three or more observables commute when each commutes with all the
others.

Since the theory is to be symmetrical between the ψ's and the φ's it must
be possible to multiply any observable α into any φ-symbol. The product, which
we always write as φα with the φ on the left-hand side, must be of the nature
of a φ and thus be capable of denoting a state and of being added to other φ's.
Corresponding to (12) and (13) we must have

(φ1 + φ2)α = φ1α + φ2α

and (cφ)α = c(φα).

We require one more axiom in our symbolic algebra, namely, an associative axiom
of multiplication which says that

(φα)ψ = φ(αψ),

so that either of these numbers may be written as φαψ without brackets.
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This �nal axiom enables us to prove that the sum or product of two observables,
de�ned by (14) or (15), is the same as the sum or product de�ned in the analogous
way with φ's instead of ψ's, i.e. by

φ(α1 + α2) = φα1 + φα2 (16)

or φ(α1α2) = (φα1)α2

for all φ. In the case of the sum, for instance, if we take the de�nition (14) we can
infer from it, with the help of (6), that

φ(α1 + α2)ψ = φα1 + φα2

or [φ(α1 + α2)− φα1 − φα2]ψ = 0

for all φ and ψ. Hence from (10) we must have

φ(α1 + α2)− φα1 − φα2 = 0,

which is the required result (16). The case of the product is quite similar. A further
similar argument enables one to deduce, from the assumption that if αψ = 0 for
all ψ then α = 0, the result that if φα = 0 for all φ then α = 0.

10. Conjugate Complex Observables

It is convenient to count sums and products of any observables as other observables.
This involves, as we shall see shortly, an extension of the meaning of an observable
to include the analogues of complex functions of classical dynamical variables, or
rather the values of such complex functions at speci�ed times. An observable
is thus not necessarily a quantity capable of direct measurement by a single
observation, but is a theoretical generalization of such a quantity.

More generally it is convenient to count any operator that can be multiplied
into the ψ's and φ's in accordance with the foregoing axioms as an observable.
Thus one can de�ne an observable α by specifying the values of αψ for all ψ, and
these values may be chosen arbitrarily except for the condition (12). If one takes
a complete set of independent ψ's, ψr say, a complete set being one such that
any ψ can be expressed linearly in terms of its members, then the values of αψr
for the members of this set ψr may be chosen quite arbitrarily, and the value of
αψ when ψ is not a member of the set is then determined by (12), so that α is
determined. Again, instead of specifying the αψ's, one could de�ne α by specifying
the numbers φsαψr, which are quite arbitrary when the φs's as well as the ψr's form
a complete independent set. The fact that α is uniquely determined in this way
follows from (10).
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Now let α be any observable and consider the equation

φsαψr = φrβψs (17)

where ψr and ψs are any two ψ's and φr and φs are their conjugate imaginaries.
We can consider this equation as de�ning a new observable β, since we can
assume (17) holds for a complete set of independent ψr's and for a complete set of
independent ψs's, and since, as is easily veri�ed, if (17) holds for two values of ψr
it must hold also for any linear combination of them, and similarly for ψs. In fact
if (17) holds for ψr = ψ1 and for ψr = ψ2, we have the equations

φsαψ1 = φ1βψ2, φsαψ2 = φ2βψ2,

from which we can deduce

φsα(c1ψ1 + c2ψ2) = c1 φsαψ1 + c2 φsαψ2

= c1φ1βψs + c2φ2βψs

= (c1φ1 + c2φ2)βψs,

which shows that (17) holds also for ψr = c1ψ1 + c2ψ2.
The observable β de�ned by (17) is called the conjugute complex of

the observable α and is written α. Thus

φsαψr = φrαψs. (18)

The conjugate complex of α is α. We use the words `conjugate complex' and not
`conjugate imaginary' since it is permissible to add together an observable and its
conjugate complex, both being quantities of the same nature, so that one can split
up any observable α into its real part, ½(α + α), and imaginary part, ½(α − α).
The condition for an observable α to be real is

φsαψr = φrαψs. (19)

In the special case when the observable α is a number, its conjugate complex
de�ned by (18) is the ordinary conjugate complex number.

It will now be proved that if ψ1 and φ1 are conjugate imaginary symbols, then

so also are αψ1 and φ1α for any observable α. If we denote by φ the conjugate
imaginary of αψ1, then from (8)

φψs = φsαψ1

for arbitrary ψs. But from the de�nition (18)

φsαψ1 = φ1αψs.
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Hence φψs = φ1αψs

for arbitrary ψs, so that from (10) (with φ's and ψ's interchanged)

φ = φ1α, (20)

which was to be proved.
We shall now �nd the conjugate complex of the product α1α2 of two observables

α1 and α2. The equation that de�nes this conjugate complex, α1α2 is

φpα1α2ψq = φqα1α2ψp (21)

for arbitrary ψp and φq. If in formula (8) we put

φs = φqα1, ψr = α2ψp,

which require, from the theorem of equation (20),

ψs = α1ψq, φr = φpα2,

we get φp α2 α1 ψq = φqα1α2ψp.

Comparing this with (21) we obtain, since these equations hold for arbitrary φp
and ψq, the result

α1 α2 = α2 α1 (22)

Thus to �nd the conjugate complex of a product we must take the conjugate complex

of each factor and reverse their order. This rule holds also when there are more
than two factors in the product, as may be proved by successive applications of
the rule for two factors, e.g.

α1α2α3 = α3 α1α2 = α3 α2 α1.

As a corollary of this theorem we have that if α1 and α2 are two real observables,
then α1α2 + α2α1 is also real and α1α2 − α2α1 is imaginary. Only when α1 and
α2 commute is α1α2 also real. Equation (18) and the theorem of equation (20)
show that it is a general rule that when one forms the conjugate imaginary or
the conjugate complex of any permissible combination of the symbols denoting
observables and states, one must reverse the order of the factors in a product and
take the conjugate imaginary or conjugate complex of each factor.

11. Physical Interpretation of Algebra of

Observables

The axioms and assumptions that we have made about observables are so far purely
mathematical and have no physical implications. The physical connexions, which
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cause these axioms and assumptions to become physical laws, will now be given.
The observables that appear in the discussion in this section must be understood
to be all real observables.

If a state ψr and an observable α are such that, when an observation is made of
the observable with the system in this state the result is certain to be the number
a, we assume this information can be expressed by the equation

αψr = aψr (23)

Conversely, when an equation of this type is given we assume it has the physical
meaning that a measurement of the observable α with the system in state ψr will
certainly give for result the number a or that the observable α has the value a for
the state ψr, to use a classical way of speaking which is permissible in this case.
Equation (23) is equivalent to

φrα = aφr (24)

provided α is real, since, from the theorem of equation (20), equation (24) is just
the conjugate imaginary of equation (23). Thus the symmetry between the φ's
and ψ's is maintained.

In the special case when the observable α is a number, then equation (23) holds
for every state ψr with this same number for a. This means that the observable
is of a trivial kind such that any measurement of it always gives one particular
result, independent of the state of the system.

We can now deduce some physical results from the theory. For example, if for
a given state ψ the observable α1 has the value a1 and the observable α2 has
the value a2, we have the equations

α1ψ = a1ψ, α2ψ = a2ψ, (25)

from which we can deduce that

(α1 + α2)ψ = (a1 + a2)ψ,

α1α2ψ = a1a2ψ,

and thus infer that for the state ψ the observable α1 + α2 has the value a1 + a2 and
the observable α1α2 has the value a1a2. These results are necessary for the theory
to be consistent, since the observations of α1 and α2 for the system in state ψ are
compatible, as neither observation need cause a change in the state, so that one
would expect the ordinary classical ideas of measurement to be valid. For the same
reason we require the result, which may easily be deduced from the �rst of
equations (25) by induction, that f(α1) has the value f(a1) for the state ψ, where
f denotes any function expressible as a power series. We shall later de�ne more
general functions of an observable than are expressible as power series, and for
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these more general functions this result will still hold. In fact it will form the basis
of the de�nition of these more general functions.

Again, if we are given that an observable α has the value a for each of two
states ψ1 and ψ2, we can write down the equations

αψ1 = aψ1, αψ2 = aψ2

from which we can deduce that

α(c1ψ1 + c2ψ2) = a(c1ψ1 + c2ψ2)

Thus α has the value a also for any state obtainable by superposition of ψ1 and
ψ2. This result was deduced in �6 from the de�nition of superposition and the fact
that it is also deducible from the present analysis illustrates the self-consistency
of the theory.

In classical mechanics an observable always has a particular value for any state.
This is not so in quantum mechanics, where a special condition of the type (23) is
necessary for an observable to have a particular value for a certain state. In general
the measurement of an observable for a given state will lead to one or other of
a number of possible results, according to a certain probability law. The question
now to be considered is what can be said in the general case about an observable
with respect to a state. If one has an observable α and one takes any two states
φr, ψs, one can form the number φrαψs. This is the only general way of forming
numbers referring to an observable and particular states. Thus an observable has
a numerical value associated with each pair of states, in stark contrast* to the
classical theory, where an observable always has a numerical value associated with
a single state, namely, the value of the observable for that state.

We could, however, as a special case, take conjugate imaginary symbols φr and
ψr which both denote the same state, and form the number φrαψr. We should
then have a number completely determined by the observable α and the state ψr,
provided the φr and ψr are normalized, since, as is easily veri�ed, φrαψr remains
invariant under any transformation of the type (4) with br = ar that preserves
the normalization. Thus it is possible to associate with the observable α a de�nite
numerical value for a single state ψr, but it would not be convenient to de�ne this
number as the value of the observable α for the state ψr, for the following reason.
If for a particular state a1 is the value of an observable α1 and a2 is that of α2,
then we should require a1 + a2 to be the value of α1 + α2 and a1a2 to be that of
α1α2. The de�nition just proposed for the value of an observable for a state would
give

a1 = φrα1ψr, a2 = φrα2ψr,

*Original:- sharp distinction
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from which we could deduce

a1 + a2 = φr(α1 + α2)ψr,

and hence infer that a1 +a2 is the value of α1 +α2. We could not, however, deduce
that

a1a2 = φrα1α2ψr,

which would, in fact, in general be untrue, so that we could not infer that a1a2 is
the value of α1α2. Thus we cannot take φrαψr as a general de�nition of the value
of an observable α for a state ψr. We must rely on the equation (23) to give
the de�nition of this value in the special cases when it exists.

The fact, however, that the proof fails only in the case of the product α1α2 and
not in the case of the sum α1 +α2 allows us to say that φrαψr is the average value
of the observable α for the state ψr. This is so because the average of the sum
of two quantities must equal the sum of their averages, but the average of their
product need not equal the product of their averages. Thus our symbolic algebra
allows us to de�ne a certain number as being the average value of an observable for
a particular state, without leading us to inconsistencies. The assumption that this
so-de�ned average is really what one would obtain if one measured the observable
a large number of times (the system having to be re-prepared each time, of course,
in order that it may be in the proper state) and worked out the average result,
constitutes the main link connecting the symbolic algebra with physical facts.
The other links previously given, i.e. the assumption that |φrψr|2 is the probability
of agreement of φr with ψs and the assumption that the equation αψ = aψ holds
when an observation of α on the system in state ψ will certainly lead to the result
a, will be shown later (�18) to be deducible from this main link as special cases.

If an observable α has the value a for a state ψr, so that equation (23) holds,
we can deduce that

φrαψr = φraψr = aφrψr = a

if φr and ψr are normalized. Hence the average value of α for the state ψr is
found to be a, as is necessary for the physical interpretation of the theory to be
consistent. We cannot, of course, deduce the converse, i.e. deduce (23) from the
equation φrαψr = a.

The numbers φrαψs which the theory also gives us, where φr and ψs denote
two di�erent states, do not have any such direct physical interpretation as the
numbers φrαψr. We shall �nd later that |φrαψs|2 is, apart from a certain factor, the
probability of a transition from state ψs to state φr being caused by a perturbing
energy whose time integral is α. (See �52.)
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12. Example of Algebra of Observables

As an example of the symbolic algebra of observables, which is the same as ordinary
algebra except for the non-validity of the commutative law of multiplication,
we shall consider some propertics of two observables, p and q, that satisfy

qp− pq = i (26)

i being a root of minus one. From �10 we see that it is possible for two real
observables p and q to satisfy this relation. If we multiply (26) by q on the left,
and then by q on the right, we obtain

q2p− qpq = iq

and qpq − pq2 = iq,

from which, by addition, we �nd

q2p− pq2 = 2iq.

This result can be generalized. If we multiply (26) �rstly by qn−1 on the left,
secondly by qn−2 on the left and q on the right, thirdly by qn−3 on the left and
q2 on the right, and so on until n-thly we multiply simply by qn−1 on the right,
we get the equations

qnp− qn−1pq = iqn−1

qn−1pq − qn−2pq2 = iqn−1

qn−2pq2 − qn−3pq3 = iqn−1

. . . . . . . .

. . . . . . . .

qpqn−1 − pqn = iqn−1,

which give, on addition, the result

qnp− pqn = niqn−1.

This result may be written

qnp− pqn = idqn/dq.

It follows that, if f(q) is any function of q expressible as a power series,

fp− pf = idf/dq, (27)
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since this result must hold separately for each term in the expansion.
As a special case, we may take for f the power series

f(q) =
∞∑
n=0

(ic)nqn

n!

where c is a number. We can de�ne this to be eicq and the ordinary exponential
theorem will then hold, since no symbol that does not commute with q could occur
in the proof of it to make a di�erence between the present and ordinary algebra.
With this expression for f , (27) becomes

eicqp− peicq = −ceicq

or eicqp = (p− c)eicq. (28)



III. EIGENVALUES AND

EIGENSTATES

13. De�nitions and Elementary Properties

In the present chapter we shall consider some of the properties of real observables.
If we have any real observable α we can write down the equation

αψ = aψ (1)

where a is a number, and consider it as an equation for the two unknowns a and ψ.
If a and ψ are any solution, we call them respectively an eigenvalue and an eigen-ψ
of the observable α. It may easily be seen that the eigenvalues are all real numbers,
since if we multiply (1) by the φ-symbol that is conjugate imaginary to ψ we obtain

φαψ = aφψ.

Now φαψ and φψ are both real, as follows from equations (19) and (8) of
the preceding chapter when one takes r = s, and hence a must be real. Analogous
to (1) is the equation

φα = aφ. (2)

If a and ψ are any solution of (1), then the same value of a and the φ that
is conjugate imaginary to this ψ form a solution of (2), since equation (2) is
then the conjugate imaginary of equation (1). We call the φ's that solve (2)
eigen-φ's, and the states denoted by the eigen-ψ's or eigen-φ's we call eigenstates
of the observable α. Each eigen-ψ, eigen-φ or eigenstate is associated with one
de�nite eigenvalue, or, as we shall say, belongs to that eigenvalue.

The physical meaning of an eigenvalue is that there exists a state, namely,
the eigenstate belonging to it, such that a measurement of the observable when
the system is in this state will certainly give for result just this eigenvalue.
The eigenvalues of an observable are the possible results of a measurement of this

observable. Every possible result of the measurement of α must be an eigenvalue as
it must satisfy (1) when one takes for the ψ in this equation the state of the system

32
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immediately after the observation has been made. The whole set of eigenvalues
of an observable may consist of a discrete set of numbers, or a continuous range
of numbers, or perhaps both. The calculation of eigenvalues is one of the main
problems of quantum mechanics.

In the special case when the observable is a number, it has only one eigenvalue,
namely, itself, and any state is an eigenstate. If α is any observable and c is a
number, then, as follows at once from the de�nitions, each eigenvalue of α + c is
greater by c than an eigenvalue of α and each eigenstate of α+c is an eigenstate of
α. Similarly each eigenvalue of cα is c times an eigenvalue of α and each eigenstate
of cα is an eigenstate of α.

The theorem will now be proved that two eigenstates belonging to two di�erent

eigenvalues of an observable are orthogonal. Suppose the eigenstate ψ1 belongs to
the eigenvalue a1 and the eigenstate ψ2 belongs to the eigenvalue a2. We then have
the equations

αψ2 = a1ψ1 (3)

φ2α = a2φ2 (4)

Multiplying (3) by φ2 on the left-hand side and (4) by ψ1 on the right-hand side,
we obtain

φ2αψ1 = a1φ2ψ1

and φ2αψ1 = a2φ2ψ1.

Hence (a1 − a2)φ2ψ1 = 0,

so that, if a1 is not equal to a2, then φ2ψ1 = 0 and the two states ψ1 and ψ2

are orthogonal. This theorem is required by the physical meaning of eigenstates,
since for two eigenstates belonging to two di�erent eigenvalues there exists
an observation, namely, the measurement of the observable α, for which the result
must certainly be di�erent in the two cases, so that the two states are, by de�nition,
orthogonal.

If ψ1 and ψ2 are two eigen-ψ's belonging to the same eigenvalue, then it is
evident that any linear combination of them (c1ψ1 + c2ψ2) must also be an eigen-ψ
belonging to this eigenvalue. It will now be proved that no linear combination of
eigen-ψ's belonging to di�erent eigenvalues can be an eigen-ψ, i.e. that eigen-ψ's
belonging to di�erent evgenvalues are all necessarily independent. If this were not
so we should have a relation of the type∑

r

crψr = 0, (5)

with numerical coe�cients cr, between a number of eigen-ψ's belonging to di�erent
eigenvalues. We can without loss of generality assume that there is no other
independent relation of this type between these eigen-ψ's, since if there were others
we could eliminate some of the ψ's, which would leave a single relation of this type



34 III. EIGENVALUES AND EIGENSTATES

between the remainder. Multiplying (5) by α, we �nd

0 = α
∑
r

crψr =
∑
r

crαψr =
∑
r

crarψr, (6)

if ar is the eigenvalue belonging to ψr. Now (6) is a linear relation between the ψr's
with numerical coe�cients and therefore, by hypothesis, must not be independent
of (5). This requires that the ar's shall all be equal, so that the ψr's must all belong
to the same eigenvalue.

This theorem could have been inferred, from the de�nition of superposition
in �6 together with the physical meaning of eigenstates. A relation of the type
(5) implies that one of the eigenstates, ψ1 say, is obtainable by superposition of
the others ψ2, ψ3, . . . , so that any result that can be obtained from an observation
of the system in state ψ1 must have a �nite probability of being the result when
the observation is made on the system in at least one of the states ψ2, ψ3, . . . .
This would not be the case if the observation consisted in the measurement
of the observable α when the ψr's all belong to di�erent eigenvalues of α.
Thus a relation of the type (5) is impossible.

14. The Expansion Theorem

The expansion theorem of the theory of eigenvalues asserts that an arbitrary

ψ-symbol can be expanded in terms of eigen-ψ's of any real observable, thus

ψ =
∑
p

ψp (7)

where the ψp's are eigen-ψ's of a real observable α. Such an expansion must be
unique, since otherwise there would be a relation of the type (5) between eigen-ψ's
belonging to di�erent eigenvalues. If the eigenvalues of α do not form a discrete
set of numbers but a continuous range, or if they form both a continuous range
and a discrete set, then the number of eigen-ψ's occurring in (7) may be more
than an enumerable number and equal to the number of points on a line. In such
a case we may require an integral of the type

ψ =

∫
ψp dp (8)

in order to express the general ψ, or we may require both a sum and an integral.
The theory of ψ-symbols developed in the previous chapter does not give any
rigorous de�nition for an integral of the type (8). In order to get such a de�nition
one would have to introduce a number of new assumptions concerning limits and



14. The Expansion Theorem 35

continuity for the ψ-symbols, which would be beyond the scope of the present work.
For all physical purposes it is su�cient for one not to aim at a rigorous theory when
dealing with such things, but to content oneself with making use of rough intuitive
notions about limits and continuity, such as could be obtained, for instance,
from the vector picture of the ψ's. These intuitive notions show that if one has
a ψ-symbol ψp that involves a parameter p in some reasonably continuous way,
one can di�erentiate or integrate ψp with respect to p and the result will be
another ψ-symbol.

Under these circumstances one cannot, of course, attempt to give a rigorous
deduction of the expansion theorem from the symbolic algebra. The following
argument, however, makes the theorem appear plausible. Consider the ψ-symbol
ψr that is a function of the parameter τ and that satis�es the di�erential equation

∂

∂τ
ψτ = iαψτ . (9)

If ψτ is given for one value of τ , then this equation �xes ψτ for a slightly greater
value of τ . Thus we should expect this equation to have one solution, and only
one, for any given initial value for ψτ , i.e. for ψτ equal to an arbitrary ψ0 when
τ = 0. Suppose now that this solution can be expressed as a Fourier series or
integral in τ , thus, if we take for de�niteness the case of the integral,

ψr =

∫
eipτψp dp , (10)

where ψp is independent of τ , but involves the new parameter p. Substituting
this expression for ψτ in (9), we obtain∫

ipeipτψp dp = iα

∫
eipτψp dp

or
∫
peipτψp dp =

∫
eipταψp dp .

Since this equation holds for all values of τ we can equate coe�icients of eipτ,
which gives

pψp = αψp.

Thus ψp is an eigen-ψ of α belonging to the eigenvalue p. If we now put τ = 0
in (10), we obtain

ψ0 =

∫
ψp dp ,

which expresses the arbitrary ψ0 in terms of the eigen-ψ's ψp in the form (8).
The discrete terms such as occur in (7) would arise when the Fourier expansion
(10) requires terms of a Fourier series.
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The weak point in the above argument is the assumption of the possibility of
a Fourier expansion (10) for ψτ . If one takes the vector picture and considers ψτ
to be a vector varying continuously with τ , one would expect some kind of Fourier
expansion to be possible, except when the magnitude of the vector tends to in�nity
as τ → ∞, a possibility that may very well occur with an equation of motion of
the type (9). One can, however, exclude this possibility by making use of the fact
that α is a real observable. (For an observable that is not real the expansion
theorem is not necessarily true.) If φτ is the φ-symbol that is conjugate imaginary
to ψτ , it will satisfy the conjugate imaginary di�erential equation to (9), which is

∂

∂τ
φτ = −iφrα.

Hence ∂

∂τ
(φτψτ ) = φτ

∂ψτ
∂τ

+
∂φτ
∂τ

ψτ

= φτ iαψτ − iφταψτ = 0. (11)

Thus the square of the modulus of the vector ψτ , which is φτψτ , remains constant.
From the above non-rigorous discussion one would expect the expansion

theorem to follow rigorously from the symbolic algebra with the addition of suitable
axioms about limits and continuity. The corresponding theorem for φ's must then,
of course, also hold. Throughout the rest of this chapter we shall, for de�niteness,
assume the expansions we have to deal with involve sums and not integrals.
The theorems to be proved would still be true for integrals, only formal alterations
in the proofs being required. These formal alterations would, however, require
a new notation, and this will be given in the next chapter (see �22).

15. Functions of an Observable

The expansion theorem enables one to give a de�nition of a function of a real
observable of the same degree of generality as that of an ordinary function of
a real variable. Let α be a real observable and let ψp be one of its eigen-ψ's,
belonging to the eigenvalue ap, so that

αψp = apψp.

It is evident, as was mentioned in �11, that if f(x) denotes any function of x
expressible as a power serics, then

f(α)ψp = f(ap)ψp. (12)

We can assume that this relation holds for more general functions. If f(x) denotes
any function of the real variable x whose domain includes the point x = ap,
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then the right-hand side of (12) has a meaning and we can de�ne f(α)ψp by this
right-hand side. If there are several eigen-ψ's belonging to the same eigenvalue ap,
say ψ′p, ψ

′′
p , . . . , so that there can exist linear relations between them of the type∑

c′ψ′p = 0,

where the coe�cients c′ are numbers, then the de�nition (12) is self-consistent,
since it gives

f(α)
∑

c′ψ′p =
∑

c′f(α)ψ′p =
∑

c′f(ap)ψ
′
p = 0.

Thus if the domain of the function f(x) includes all the eigenvalues of α, we can give
a meaning to f(α) multiplied into any eigen-ψ of α. Further, we can give a meaning
to f(α) multiplied into an arbitrary ψ, since we can expand this arbitrary ψ in
terms of eigen-ψ's and multiply f(α) into each term of the expansion separately.

Thus one can give a meaning to f(α) when f(x) is any function of the real

variable α, even an irregular or discontinuous one, whose domain includes all

the eigenvalues of α. If this domain contains other points besides the eigenvalues of
α, then the values of f(x) for these other points will not a�ect f(α). These results
are a necessary consequence of the physical meaning of eigenvalues. If α is
an observable quantity, then f(α) must also be observable when f(x) is any
function of the real variable x that has a meaning for all values of x that are
possible results of the observation of α, i.e. all eigenvalues of α, since the same
apparatus and experiment that measure α really also measure f(α).

It follows from (12) that every eigen-ψ of α is an eigen-ψ of f(α). The converse,
that every eigen-ψ of f(α) is an eigen-ψ of α, is not true, except when α is
a function (a single-valued function is of course understood) of f(α). Also it follows
that the eigenvalues of f(α) are just this function f of the eigenvalues of α,
e.g. the eigenvalues of α2, are the squares of those of α. These results are obviously
necessary for the physical meanings of eigenvalues and eigenstates to be tenable.
Again, it may easily be deduced from the de�nition (12) that the sum or product of
two functions of an observable is a function of that observable and that a function
of a function of an observable is a function of that observable, which results are
also physically necessary.

We can use the eigen-φ's instead of the eigen-ψ's in order to de�ne f(α).
We then have

φpf(α) = f(ap)φp,

where φp is any eigen-φ of α. This equation is, according to �10, just the conjugate
imaginary equation to (12) and is thus deducible from (12). The two de�nitions
of f(α) are therefore equivalent.
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The theorem will now be proved that any observable that commutes with α
commutes also with f(α). This theorem is of course obvious when f is expressible
as a power series. Let β be any observable that commutes with α, i.e. that satis�es
βα = αβ. Let ψp be an eigen-ψ of α belonging to the eigenvalue ap and let φq be
an eigen-φ belonging to the eigenvalue aq, which may or may not equal ap, so that

αψp = apψp φqα = aqφq.

We now have φqβαψp = φqβapψp = apφqβψp.

Again φqβαψp = φqαβψp = aqφqβψp.

Hence (ap − aq)φqβψp = 0,

so that either φqβψp = 0, or ap = aq, which would give f(ap) = f(aq). Thus in
either case

[f(ap)− f(aq)]φqβψp = 0.

Now φqβf(α)ψp = φqβf(ap)ψp = f(ap)φqβψp

and again φqf(α)βψp = f(aq)φqβψp.

Hence φq[βf(α)− f(α)β]ψp = [f(ap)− f(aq)]φqβψp = 0.

This result is true for any eigen-ψ, ψp, and is hence also true for an arbitrary ψ,
which can be expanded in terms of eigen-ψ's. Similarly it is true for any eigen-φ,
φq, and is hence also true for an arbitrary φ, which can be expanded in terms of
eigen-φ's. Hence

βf(α)− f(α)β = 0,

which is the result required. In this proof it is not assumed that β is a real
observable, although, of course, it is understood that α is real in order that a
general function of α may have a meaning.

The converse theorem will now be proved, namely, if every observahle that

commutes with a real observable α also commutes with another observable f , then f
is a function of α. It will �rst be shown that if ψp is any eigen-ψ of α, then it is also
an eigen-ψ of f . We introduce an observable β satisfying the following conditions:

βψq = 0,

whenever ψq is an eigen-ψ of α belonging to an eigenvalue aq that di�ers from that
of ψp, which is ap;

βψp = ψp

and βψ′p = 0,

whenever ψ′p is one of a set of eigen-ψ's of α belonging to the eigenvalue ap, such
that this set, together with ψp, form a complete independent set of all eigen-ψ's
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belonging to the eigenvalue ap. We shall then have that ψp, the ψ
′
p's, and ψq's

form a complete set of independent ψ's, so that β is completely de�ned by these
equations. It is now easily veri�ed that

αβψq = 0 = βαψq

αβψp = apψp = βαψp

αβψ′p = 0 = βαψ′p.

Thus αβψ = βαψ

for arbitrary ψ and β commutes with α. Hence, by hypothesis, β also commutes
with f , so that

βfψp = fβψp = fψp.

Now for an arbitrary ψ-symbol ψ one must have

βψ = cψp,

where c is a number, as one can easily see by expanding ψ in terms of ψp, the ψ
′
p's

and ψq's, and multiplying β into each term separately.

Hence βfψp = cψp,

so that fψp = cψp

and ψp is an eigen-ψ of f . To complete the proof that f a function of α according
to the above de�nition, it remains to be shown only that if two or more eigen-ψ's
belong to the same eigenvalue of α, then they also belong to the same eigenvalue
of f . The functional relation between the eigenvalues of f and those of α will then
specify the function that f is of α. Now if two or more eigen-ψ's of α belong to
the same eigenvalue of α, then any linear combination of them will be an eigen-ψ
of α. From what has already been proved it follows that this linear combination
must also be an eigen-ψ of f , which can be the case only if the eigen-ψ's, that it
is a linear combination of, all belong to the same eigenvalue of f .

16. Examples of Functions of Observables

Some examples of elementary functions of a real observable α will now be
considered. The reciprocal α−1 always exists when α has not the eigenvalue zero.
By de�nition it satis�es

α−1ψp = ap
−1ψp,

where ψp is an eigen-ψ of α belonging to the eigenvalue ap. Hence

αα−1ψp = αap
−1ψp = ψp
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and since this is true for all ψp we must have αα
−1 = 1. Similarly α−1α = 1. Either

of these equations is su�cient to determine α−1 completely when this reciprocal
exists according to the above de�nition. To prove this result, suppose there are
two solutions, (α−1)1, and (α−1)2, of αα

−1; so that

α(α−1)1 = 1 α(α−1)2 = 1.

This gives aξ = 0, (13)

where ξ = (α−1)1 − (α−1)2.

If α is such that there exists a ξ, not identically zero, satisfying (13), then α can
have no reciprocal, according to the above de�nition, since if such a reciprocal α−1

exists we obtain, by multiplying (13) on the left-hand side by α−1,

0 = α−1αξ = ξ.

Hence ξ = 0 and our two solutions of αα−1 = 1 are identical.
As a second example we shall take the square root of α. This is de�ned by

√
αψp = ±

√
ap ψp. (14)

The square root of α always exists, but is a real observable only provided α has
no negative eigenvalues. From (14) one obtains

√
α
√
αψp =

√
ap
√
ap ψp = αψp

so that
√
α
√
α = α. (15)

On account of the ambiguity of sign in (14), the square root of an observable is
to a certain extent indeterminate. In order to determine a square root completely
one must choose a particular sign for each eigenvalue ap to insert in (14), which
is the same as �xing the sign of the square root of a real variable whose domain
consists of the eigenvalues ap. One can choose the sign to vary as irregularly as
one likes in passing from one eigenvalue to the next, and equation (14) will always
de�ne an observable

√
α satisfying (15) that can legitimately be called a square

root of α. If the observable α has two eigen-ψ's belonging to one and the same
eigenvalue aq, then we could de�ne an observable

√
α by equation (14) with the+

sign for one of these eigen-ψ's and the−sign for the other, and with arbitrary signs
for the eigen-ψ's belonging to eigenvalues other than aq. This observable would
still satisfy (15), but it would not be a function of the observable α in accordance
with our de�nition, which requires a unique coe�cient on the right-hand side
of (14) for each eigenvalue ap, so that this coe�cient will form a single-valued
function of the real variable ap. The

√
α de�ned without this unique coe�cient

would not, for instance, satisfy the condition of commuting with any observable
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that commutes with α. Thus, unlike what we had in the case of the reciprocal,
equation (15) is not su�cient for the de�nition of square-root functions, but must
be supplemented by the condition that the observable that is being de�ned is
actually a function of α. The number of di�erent square-root functions is 2n where
n is the number of di�erent eigenvalues of α. The most useful one is usually that,
which exists only when all the eigenvalues of α are positive, for which the positive
sign is taken in every case.

As an example of a non-analytical function we may take the modulus |α| of
the observable α. This is de�ned by

|α|ψp = |ap|ψp

and is quite a proper observable, in spite of the fact that the corresponding function
of a real variable is discontinuous, and may be used freely in the analysis when
desired.

17. Simultaneous Eigenstates

A state ψ may be simultaneously an eigenstate of two observables α and β,
i.e. it may satisfy both

αψ = aψ

and βψ = bψ,

where a and b are numbers. We should then have

αβψ = abψ = βαψ

or (αβ − βα)ψ = 0.

This suggests that the chances for the existence of a simultaneous eigenstate of two
observables α and β are most favourable when (αβ − βα)ψ = 0, i.e. when α and
β commute. When α and β do not commute the possibility for the existence of
a simultaneous eigenstate is not absolutely ruled out, but the occurrence of such
a state is exceptional. On the other hand, when α and β commute there exist
so many simultaneous eigenstates, that, as will now be proved, an arbitrary state

can be expanded in terms of them. We thus get a generalization of the expansion
theorem of �14.

Let α and β be two observables that commute and let ψa, be an eigen-ψ of α
belonging to the eigenvalue a. By the expansion theorem of �14 we can expand ψa
in terms of eigen-ψ's of β, thus

ψa =
∑
b

ψb, (16)
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where ψb is an eigen-ψ of β belonging to the eigenvalue b. It will now be proved
that each ψb in this expansion is an eigen-ψ also of α and is thus a simultaneous
eigen-ψ of α and β. If f(β) is any function of the observable β, we have

αf(β)ψa = α
∑
b

f(β)ψb

= α
∑
b

f(b)ψb

from the de�nition of a function given in �15. Now from a theorem of �15, since α
commutes with β it must also commute with f(β), so that of

αf(β)ψa = f(β)αψa = f(β)aψa

= af(β)
∑
b

ψb = a
∑
b

f(b)ψb.

Hence α
∑
b

f(b)ψb = a
∑
b

f(b)ψb. (17)

Now f(b) is an arbitrary function of the real variable b, so that for each value of b
in the domain of b, f(b) is an arbitrary number. Hence we can equate coe�cients
of f(b) in (17), which gives

αψb = aψb.

Thus each of the ψb's in the expansion (16) is an eigen-ψ of α belonging to
the same eigenvalue a as that of our original ψa and is thus a simultaneous eigen-ψ
of α and β. Any eigen-ψ ψa of α can therefore be expanded in terms of these
simultaneous eigen-ψ's. But an arbitrary ψ can be expanded in terms of ψa's, and
hence an arbitrary ψ can be expanded in terms of simultaneous eigen-ψ's.

The converse theorem is also easily proved, namely, if two observables α and β
are such that an arbitrary ψ can be expanded in terms of the simultaneous eigen-ψ's
of α and β, then α and β commute. We have, in fact, if ψab is a simultaneous eigen-
ψ of α and β belonging to the eigenvalues a and b respectively, the equation

(αβ − βα)ψab = (ab− ba)ψab = 0.

Hence (αβ − βα)ψ = 0,

where ψ is any ψ-symbol that can be expanded in terms of the ψab's. If this is true
for an arbitrary ψ, we can infer that

αβ − βα = 0,

as required.
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The idea of simultaneous eigen-ψ's may obviously be extended to more than
two observables and the theorem just proved still holds, i.e. an arbitrary ψ can
be expanded in terms of the simultaneous eigen-ψ's of any set of observables
that commute and also its converse. The same arguments used for the proof
in the case of two observables are adequate for the general case, e.g. if we have
three observables α, β, γ that commute, each with the other two, we can expand
any simultaneous eigen-ψ of α and β in terms of eigen-ψ's of γ and then show that
each of these eigen-ψ's of γ is also an eigen-ψ of α and β.

The fact that there is an expansion theorem for two or more observables that
commute, the same as that for a single observable, means that a set of two or more
observables that commute has many of the properties of a single observable and can
for many purposes be counted as a single observable, the result of a measurement
of which is expressible by two or more numbers. Thus the theory of functions of
a single observable developed in �15 can be applied without change to functions
of two or more observables that commute. If α, β, γ, . . . are a set of observables
that commute, we de�ne a general function of them, f(α, β, γ, . . . ), by

f(α, β, γ, . . . )ψabc... = f(a, b, c, . . . )ψabc...,

where ψabc... a simultaneous eigen-ψ of α, β, γ, . . . belonging to the eigenvalues
a, b, c, . . . respectively, and f(a, b, c, . . . ) is a function of the real variables a, b, c, . . .
whose domains consist of the eigenvalues of α, β, γ, . . . respectively. The theorems
given in �15 about functions of single observables will apply also to functions of sets
of observables that commute, the proofs being formally equivalent in the two cases.
For example, we shall have the theorem that any observable that commutes with
each of a set of commuting observables α, β, γ, . . . will commute also with any
function of them, f(α, β, γ, . . . ).

If we take the maximum possible number of independent observables that
commute, the condition of independence being that no one of them can be
expressed as a function of the others, then there cannot be more than one
simultaneous eigenstate for them all belonging to a speci�ed set of eigenvalues.
To prove this result, let αr be the set of commuting observables and suppose there
are two independent simultaneous eigen-ψ's, ψ1 and ψ2, of all the αr's belonging
to the same set of eigenvalues. Introduce the new observable β de�ned by

βψ1 = ψ1, βψ2 = 0, βψ3 = 0,

whenever ψ3 is a simultaneous eigen-ψ belonging to a di�erent set of eigenvalues.
Then this β commutes with all the α's and also it is not a function of them, as may
be seen from the fact that any linear combination of ψ1 and ψ2 is a simultaneous
eigen-ψ of all the α's but is not an eigen-ψ of β, so that the set of α's does not
contain the maximum possible number of independent commuting observables.
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Hence, when the set of α's does satisfy the given conditions, each eigenstate must
be uniquely determined by the eigenvalues to which it belongs. Such a set we call
a complete set of commuting observables.

18. Some Probability Theorems

We shall now determine the probability of a given result being obtained when

an observation is made on the system in a given state. For this purpose the only
physical assumption we shall make use of is that given in �11 for the average
value of an observable. To determine the probability that an observable shall be
found to have the value a when a measurement of it is made for the system in
a state ψ, we use the fact that if a measurement is made of f(a), any function
of α, the average result obtained will be

φf(α)ψ,

where φ is the conjugate imaginary of ψ, provided φ and ψ are normalized.
Suppose φ and ψ to be expanded in terms of eigen-φ's and eigen-ψ's, thus

φ =
∑
a

φa, ψ =
∑
a′

ψa′ , (18)

where φa belongs to the eigenvalue a and ψa′ to a
′. The expression for the average

of f(α) now becomes ∑
a

φaf(α)
∑
a′

ψa′ =
∑
a, a′

f(a)φaψa′

=
∑
a

f(a)φaψa, (19)

when we use the theorem of �13 that eigenstates belonging to di�erent eigenvalues
are orthogonal. Now if P (a) is the probability of the observable α being
found to have the value a, the average value of f(α) must be

∑
a f(a)P (a),

since the ordinary probability rules will apply in this case. Equating this expression
to (19), we �nd ∑

a

f(a)P (a) =
∑
a

f(a)φaψa.

This holds when f(a) is an arbitrary function of the real variable a, so that we must
be able to equate coe�cients of f(a), which gives

P (a) = φaψa. (20)
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We can easily verify that this expression for P (a) gives unity for the total
probability of α having any value, since from the normalizing condition for φ
and ψ we �nd ∑

a

φa
∑
a′

ψa′ = 1,

which reduces to ∑
a

φaψa = 1.

We can put the expression (20) in a di�erent form by inserting numerical
coe�cients in the expansions (18) so that they read

φ =
∑
a

caφa, ψ =
∑
a′

ca′ψa′ ,

and taking the φa's and ψa's to be normalized. We then get for P (a)

P (a) = caφacaψa = |ca|2

so that the probability of α having any given value is equal to the square of
the modulus of the corresponding coe�cient in the expansion.

From this it follows at once that if the state ψ is an eigenstate belonging
to the eigenvalue a, the probability of α having the value a is unity. Thus the
result that if αψ = aψ, α certainly has the value a for the state ψ, is deducible
from the general assumption for the average value of an observable. A second
immediate consequence is that any result, a say, for an observation of α on
the system in the state c1ψ1 + c2ψ2 has a �nite probability of being the result
when this observation is made for either state ψ1 or state ψ2, since if the term
belonging to the eigenvalue a in the expansion of c1ψ1 + c2ψ2 in eigen-ψ's of α
does not vanish, that in the expansion either of ψ1 or of ψ2 must also not vanish.
This shows that the de�nition of superposition given in �6 is equivalent to that
contained in the symbolic algebra, together with the interpretation of this algebra
that φαψ is the average of α.

The results we have just obtained all remain true when we replace
the observable α by a set of two or more observables that commute, the proofs
being formally unaltered. Thus, we shall have that if ψ is expanded in terms of
simultaneous eigen-ψ's of two observables, α and β, that commute, i.e.

ψ =
∑
a, b

ψab

where ψab is a simultaneous eigen-ψ, belonging to the eigenvalues a and b for α
and β respectively, then the probability that the results and β shall be obtained
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from measurements of α and β for the state ψ will be φabψab when ψ is normalized.
The existence of a de�nite probability for these results, independent of the order
in which the observations are made, requires that the observations shall not
interfere with each other and suggests that the condition that two observables

commute is equivalent to the condition that the two observations are compatible.

A formal proof of this will now be given. Before we can do this we must
obtain a mathematical form for the condition that an observation is made with
the minimum of disturbance, which we have hitherto discussed only qualitatively.

Consider an observation, consisting of the measurement of an observable α,
to be made on a system in the state ψ. The state of the system after the observation
must be an eigenstate of α, since the result of a measurement of α for this state
must be a certainty. Now suppose the observation to be made in such a way that
the state of the system afterwards is always one of those that occur in the expansion
of the initial ψ in terms of eigen-ψ's of α, i.e. one of the ψa's in

ψ =
∑
a

ψa.

This is permissible since there is one eigen-ψ ψa in the expansion for every
eigenvalue a that has a �nite probability of being the result of the observation.
This observation of α may then conveniently be de�ned to be the one that causes
the minimum of disturbance to the system. Observations that cause the minimum
disturbance are thus those with the property that, by a superposition of all
the possible states after the observation, the state before the observation may be
formed, or those with the property that any result that can be obtained from any
observation on the system in the initial state is a possible result when the same
observation is made on the system in one of the �nal states. It is observations
with this property that should be understood in the discussion on compatibility
in �4. Granting the existence of observations with this property, there is a physical
necessity for the expansion theorem of �14.

Now let α and β be two observables that commute and let any state ψ be
expanded in terms of simultaneous eigen-ψs's of α and β, thus

ψ =
∑
a, b

ψab.

The expansion of ψ in terms of eigen-ψ's of α must then be

ψ =
∑
a

ψa, (21)

where ψa =
∑
b

ψab, (22)
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and similarly the expansion of ψ in terms of eigen-ψ's of β must be

ψ =
∑
b

ψb, (23)

where ψb =
∑
a

ψab. (24)

The su�xes in each case denote the corresponding eigenvalues. If ψ is
normalized, then the probability for this state of the result b being obtained
from a measurement of β will be φbψb. When this result is obtained, the state
of the system after the observation will be ψb, if the observation is made with
the minimum of disturbance according to the above de�nition. If an observation is
now made of α for this �nal state ψb, the probability of the result a being obtained
will be, from (24),

φabψab/φbψb,

the denominator arising from the fact that the symbol ψb is not normalized.
Thus the probability of �rst the result b being obtained for β and then the result a
for α will be, by multiplication, φabψab. The total probability of the result a being
obtained for the second observation with any result for the �rst must therefore be∑

b

φabψab.

If, now, an observation of α were made on the system in the initial state ψ, with
no observation at all of β, the probability of the result a being obtained would be,
from (21), φaψa. On account of (22), this must equal∑

b

φab
∑
b′

ψab′ =
∑
b

φabψab,

from the orthogonality theorem of �12, which is the same as the probability
that the result a shall be obtained for α after an observation of β. This is just
the condition that α and β shall be compatible according to �4.

The converse will now be proved, that if the measurements of two observables
α and β are two compatible observations, then α and β commute. It was shown in
�4 that if the compatible observations α and β are both made on the system in any
state ψ, the �nal state will be such that the result for either observation with this
state will be a certainty, i.e. the �nal state will be a simultaneous eigenstate for α
and β. If the observations are made with the minimum of disturbance according
to the above de�nition, then the initial state ψ must be capable of being expanded
in terms of all the possible �nal states. Thus an arbitrary ψ can be expanded in
terms of simultaneous eigen-ψ's of α and β, so that α and β must commute.
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The identi�cation of the condition of commutability of observables with that
of the compatibility of the observations allows us to see a physical necessity for
the theorem of �15 that any observable that commutes with an observable α
commutes also with f(α), any function of α. This theorem may now be stated
in the form that any observation that is compatible with the observation of α is
compatible also with the observation of f(α) and is thus physically obvious, since
any observation of α is in the fact itself also an observation of f(α).

It will now be shown that the fact that the probability of agreement of two
states ψ1 and φ2 is |φ2ψ1|2, when ψ1 and φ2 are normalized, is deducible from
the general assumption for the average of an observable. It has been shown that
from this general assumption one can deduce that the probability of an observable
α having the value a for the state ψ1 is |ca|2, where ca is the coe�cient of the eigen-ψ
belonging to the eigenvalue a in the expansion of ψ1 in terms of eigen-ψ's of α,

ψ1 =
∑

caψa (25)

when ψ1, and all the ψa's are normalized. This result is still true when α
denotes a set of commuting observables αr and ψa is a simultaneous eigen-ψ
belonging to the set of eigenvalues ar. There is one maximum observation,
the result of which for the state ψ2 is a certainty. This maximum observation
will consist in the measurement of a set of commuting observables αr, which
set must be a complete set, in the sense de�ned at the end of the preceding
section, if the observation is really a maximum one. The state ψ2 is then
a simultaneous eigen-ψ of all these observables αr and there is no other
simultaneous eigen-ψ belonging to the same set of eigenvalues as ψ2 does.
That term in the expansion (25) which belongs to the same set of eigenvalues
as ψ2 must therefore be just ψ2 itself or di�er from it by a trivial numerical factor.
The probability of agreement of ψ1 with ψ2, which is the probability that the result
of the observation of the α's for state ψ1 is the same as for state ψ2, is therefore
|ca2|2, where ca2 is the coe�cient of that ψa, in (25) that is just ψ2. But from
the orthogonality theorem, one �nds that φ2ψ1 is equal to just this coe�cient ca2,
so that the probability of agreement is |φ2ψ1|2.

19. Contact Transformations

The folowing important theorem in the theory of eigenvalues will now be proved.
If S is any observable having a reciprocal S−1 and α is any observable, then the

eigenvalues of SαS−1 are the same as those of α. Let a be any eigenvalue of α
and let ψa be an eigen-ψ of α belonging to it, so that

αψa = aψa.
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This gives SαS−1Sψa = Sαψa = Saψa = aSψa.

Hence Sψa is an eigen-ψ of SαS−1 belonging to the eigenvalue a. Conversely, as
may be shown in a similar way, if a is any eigenvalue of SαS−1 and ψ is an eigen-ψ
of SαS−1 belonging to it, then a is also an eigenvalue of α and S−1ψ is an eigen-ψ
of α belonging to it.

It is not necessary for this theorem that S should be a real observable. If S is
not real we cannot use the general de�nition of a function of an observable in order
to de�ne S−1, but must use instead the conditions SS−1 = S−1S = 1, which are
su�cient for the proof of the theorem. S can be any observable such that there
exists an S−1 satisfying these conditions. It is also not necessary for the theorem
to be true that α should be a real observable, but since the only eigenvalues of
interest in quantum mechanics are those of real observables, the theorem is useful
only when both α and SαS−1 are real. This imposes a condition on S. If SαS−1

is to be real whenever α is real, we must have, from the rule (22) of �10,

SαS−1 = SαS−1 = S−1αS = S−1αS

which requires, ignoring possible trivial numerical factors,

S−1 = S, S = S−1.

Either of these conditions is a consequence of the other.
When S satis�es these conditions, the transformation from a set of observables

αr to the set βr = SαrS
−1 is called a contact transformation of observables,

since, as we shall see later, it is analogous to a contact transformation of
classical mechanics. Each of the new observables βr has the same eigenvalues
as the corresponding original one αr. Further, the transformation has other
remarkable properties, namely, if any algebraic relation holds between some of

the α's, the same relation holds between the corresponding β's, and if one of the α's
is a function of another one according to the general de�nition, the same functional

relation holds between the corresponding β's.
To prove the �rst of these two properties, we observe that any algebraic relation

between the α's may be written in a rational integral form of the type∑
cαpαq . . . αz = 0,

the summation consisting of an arbitrary number of terms, each consisting of
an arbitrary number of factors, and the c's being arbitrary numerical coe�cients.
From this we deduce, by multiplying by S on the left and S−1 on the right,
the result ∑

cSαpαq . . . αzS
−1 = 0
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or
∑

cSαpS
−1SαqS

−1 . . . SαzS
−1 = 0

or
∑

cβpβq . . . βz = 0

which is the result required.
To prove the second of these properties, suppose α2 = f(α1), where f(a) is

a function of the real variable a de�ned for each of the eigenvalues of α1. Since these
are also the eigenvalues of β1, we can give a meaning to f(β1). Let ψa be an eigen-ψ
of α1, belonging to the eigenvalue a. We then have

f(α1)ψa = f(a)ψa. (26)

But Sψa must be an eigen-ψ of Sα1S
−1 or β1, belonging to the eigenvalue a of β1,

so that we must also have

f(β1)Sψa = f(a)Sψa. (27)

Multiplying (26) by S on the left, we obtain

Sf(α1)S
−1Sψa = Sf(a)ψa

= f(β1)Sψa (28)

from (27). Now Sψa is an arbitrary eigen-ψ of β1, so that any ψ can be expanded
in terms of Sψa's. Hence we can equate coe�cients of Sψa in (28), which gives

f(β1) = Sf(α1)S
−1 = Sα2S

−1 = β2

as required.
If two contact transformations are applied successively, the result is another

contact transformation. To see how this comes about, consider the transformation
βr = SαrS

−1 from the α's to the β's and the transformation γr = TβrT
−1 from

the β's to the γ's. We have then

γr = TSαrS
−1T−1.

Now (TS)(S−1T−1) = 1

and (S−1T−1)(TS) = 1,

so that we can put S−1T−1 = (TS)−1.

The connexion betwcen the α's and γ's now becomes

γr = TSαr(TS)−1,

which is a contact transformation.
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If the observable S in the transformation β = SαS−1 di�ers from unity only
by an in�nitesimal, we get an in�nitesimal contact transformation. Suppose

S = 1 + iA,

where A is very small, so that its square may be neglected. (A small observable
is one whose eigenvalues are all small, or whose average for any state is small.)
We then have

S−1 = 1− iA,

since this gives SS−1 = S−1S = 1 with neglect of A2. The transformation equation
now becomes

β = (1 + iA)α(1− iA),

which gives β − α = i(Aα− αA), (29)

with neglect of A2. This is the standard form for an in�nitesimal contact
transformation. In order that β − α may be a real observable when α is real,
A must be a real observable.

As an example of contact transformation theory, we shall obtain some more
information about the observables p and q of �12, satisfying equation (26) of that
section. We apply the theorem that p has the same eigenvalues as SpS−1, taking
for S the expression eicq, where c is a real number, which makes S−1 = S. We now
�nd

SpS−1 = eicqpe−icq = (p− c)eicqe−icq = p− c,

with the help of equation (28) of �12. Thus p has the same eigenvalues as p − c,
which are just c less than those of p, so that if a is any eigenvalue of p, a− c must
be another. This is true for arbitrary c, so that p must have as eigenvalues all
numbers from −∞ to +∞. Similarly it may be proved that q has as eigenvalues
all numbers from −∞ to +∞. These results are necessary consequences of the
single algebraic condition qp− pq = i.



IV. REPRESENTATIONS OF

STATES AND OBSERVABLES

20. General Properties

In the two preceding chapters we dealt with certain abstract symbols, denoting
states and observables, whose exact nature was not speci�ed, but which were
assumed to obey certain de�nite laws. In the present chapter we shall
consider representations of these abstract symbols, i.e. sets of numbers having
properties that correspond completely to those of the symbols they represent.
When once one has found such a representation and has understood the nature of
the correspondence, one can obtain all the properties of the abstract symbols that
one wants by dealing entirely with their representatives, to which, since they are
just sets of numbers, ordinary mathematical methods apply. One cannot, of course,
obtain in this way any relation between the abstract symbols that one could
not obtain directly from the algebra of the abstract symbols without the help
of a representation. One can, however, often obtain results much more easily
and conveniently with the help of a representation than without it, and further
the numbers occurring in a representation have often a very direct physical
interpretation, so that representations are of great use in applications of the theory.

Suppose we have a complete set of independent ψ's, the general member of
the set being denoted by ψp. The fact that the set is complete means that every
ψ can be expressed as a sum of members of the set in the form

ψ =
∑
p

apψp, (1)

where the coe�cients ap are numbers. The fact that the members of the set
are independent requires that an expansion of the form (1) is unique,
since if an alternative expansion

ψ =
∑
p

a′pψp

52
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were possible, we could obtain by subtraction

0 =
∑
p

(ap − a′p)ψp,

which can be true with independent ψp's only if ap = a′p for all p. Thus according
to (1) each ψ determines uniquely a set of numbers ap and, conversely, each set of
arbitrary numbers ap determines a ψ. There is a one-one correspondence between
the ψ's and the sets of numbers ap.

If ψa corresponds to the set of numbers ap and ψb to the set bp, we have

ψa =
∑
p

apψp, ψ =
∑
p

bpψp,

and hence ψa + ψb =
∑
p

(ap + bp)ψp,

so that ψa + ψb corresponds to the set (ap + bp). Also, if c is any number,
cψa corresponds to the set cap. Thus all the properties of the ψ's of addition
and multiplication by numbers are possessed also by the sets of numbers ap
corresponding to them. The sets of numbers thus form a representation of
the ψ's, each ψ being represented by one set ap de�ned by (1). The ψp's will be
referred to as the fundamental ψ's of the representation. If we take a di�erent
set of fundamental ψ's, we shall get a di�erent set of numbers to represent
each ψ, so that we shall get a new representation. There is one representation
for each complete set of independent ψ's, since they may always be taken as
fundamental ψ's. In the vector picture of the ψ's the numbers representing any
ψ are its co-ordinates relative to certain axes (which may be oblique), which
are determined by the fundamental ψ's. The di�erent representations are then
the co-ordinates referred to di�erent axes. A state is de�ned by the ratios of a set
of numbers ap to each other, since a ψ can be multiplied by an arbitrary number
and will still represent the same state.

We shall now consider how an observable α is to be represented. If ψq is any
fundamental ψ of a representation of ψ's, we can form the product αψq and expand
it in terms of the fundamental ψ's in the form (1) thus

αψq =
∑
p

ψpαpq, (2)

where the coe�cients αpq are numbers, which depend of course, as the notation
implies, on the su�x q of the ψ on the left-hand side. We have put the coe�cients
αpq in (2) on the right-hand side of their respective ψpq's, instead of following
the usual practice of putting coe�cients on the left, so that the order of the two
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su�xes may be more easily remembered. That su�x of αpq which is nearer to
the ψ is the same as the su�x of the ψ. This is an example of a rule which will
be used very extensively in the future.

Each observable α determines uniquely through equation (2) a set of
numbers αpq. Conversely, each set of numbers αpq determines an observable α.
There is thus a one-one correspondence between observables α and sets of
numbers αpq. These sets of numbers are the representatives of the observables.
The correspondence between the properties of the sets of numbers and those of
the observables will now be investigated.

Each set of numbers representing an observable is twofold, on account of the two
su�xes, and may most conveniently be written as a matrix array, each number
αpq of the set being the element of the matrix in the p-th row and q-th column.
Thus each observable is represented by a matrix. The number of rows and columns
of the matrices is equal to the number of fundamental ψ's of the representation
and one row and one column correspond to each fundamental ψ. A row and
column that correspond to the same fundamental ψ correspond to one another.
An element of the matrix that lies in a row and column corresponding to one
another, i.e. an element of the type αpp, is called a diagonal element, since all such
elements lie on a diagonal of the matrix when the rows and columns are arranged
both in the same order.

If an observable α is represented by the matrix αpq, and an observable β by
the matrix βpq, then it is easily veri�ed that the observable α + β is represented
by the matrix αpq + βpq, and the observable cα, where c is a number, by cαpq.
These results rnay be expressed in symbols by the equations

(α + β)pq = αpq + βpq, (3)

(cα)pq = cαpq, (4)

which are the ordinary rules for the addition of matrices and for the multiplication
of matrices by numbers. Again, if the product αβ is represented by the matrix
(αβ)pq, we have by de�nition

(αβ)ψq =
∑
p

ψp(αβ)pq. (5)

But we have also (αβ)ψq = α(βψq) = α
∑
r

ψrβrq

=
∑
r

(αψr)βrq =
∑
p, r

ψpαprβrq (6)

By equating the coe�cients of ψp in the right-hand sides of (5) and (6), which is
permissible since the ψ's are all independent, we obtain

(αβ)pq =
∑
r

αprβrq (7)
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Thus the matrix representing αβ equals the matrix representing α multiplied

by the matrix representing β, according to the rule for matrix multiplication.
The particular arrangement of the su�xes of αpq chosen in the de�ning equation (2)
is necessary in order that this rule of matrix multiplication may hold. If instead
of (2) we had put

αψq =
∑
p

αqpψp,

we should have found for the law of multiplication

(αβ)pq =
∑
r

αrqβpr, (8)

which is not so convenient as (7).
Equations (3), (4) and (7) show that the properties of observables of

addition and multiplication are all faithfully reproduced by the properties of
the matrices representing them, and justify our saying that the matrices do
represent them. Matrices, like observables, satisfy all the laws of ordinary algebra
except the commutative law of multiplication.

It has been mentioned that a number may be regarded as a special case of
an observable. The matrix representing a number c has its elements cpq de�ned by

cψq =
∑
p

ψpcpq,

which gives cpp = c, cpq = 0, (p 6= q).

Thus the matrix representing c is a diagonal matrix, i.e. all its elements vanish
except the diagonal ones, and further all the diagonal elements are equal to c.
We can put

cpq = cδpq,

where the symbol δpq is de�ned by

δpp = 1, δpq = 0, (p 6= q). (9)

The numbers δpq are the elements of the matrix representing unity, which matrix
has the property that it leaves unchanged any matrix when multiplied into it on
either the left- or right-hand side.

We shall now obtain the law of multiplication of the representatives of

an observable and a ψ-symbol. Let ψ be represented by the set of numbers ap,
as according to (1), and let the ψ-symbol αψ, where α is any observable, be
represented by the set of numbers bp, so that

αψ =
∑
q

ψqbq.
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We have from (1) αψ =
∑
p

ψpap

=
∑
pq

ψqαqpap.

Hence, equating coe�cients of ψq, we get

bq =
∑
p

αqpap, (10)

which is the required multiplication law. It suggests that we should regard the set
of numbers ap as a matrix, having rows corresponding to the various fundamental
ψ's of the representation, but having only one column. Equation (10) would then
be the law of multiplication of such a matrix with a square matrix αqp.

The correspondence that we have found between the properties of observables
and ψ-symbols and those of their representatives, which is exempli�ed in
equations (3), (4), (7) & (10), allows us to take over any equation between
the abstract symbols into an equation between the representatives. Suppose,
for instance, that we are given the equation

αβψ = γψ′ + ψ′′, (11)

where α, β and γ are three observables and ψ, ψ′ and ψ′′ are three states.
By equating the representatives of each side of this equation, making use of
the law (10), we obtain ∑

p

(αβ)pqap =
∑
p

γqpa
′
p + a′′q ,

where ap, a
′
p and a

′′
p represent ψ, ψ

′ and ψ′′ respectively. From (7) we now get∑
pr

αqrβrpap =
∑
p

γqpa
′
p + a′′q .

Each symbol in the original equation (11) is here replaced by its representative,
occurring in the corresponding position. The su�xes are arranged according to
very simple and easily remembered rules, each consecutive pair of factors in any
term having a common su�x, the two positions of this su�x being consecutive in
the scheme of su�xes, while the su�x that occurs �rst in any term is the same for
every term. A summation is taken over each su�x that occurs twice in a term.

As examples of equations that can be taken over in this way may be mentioned
any of the equations between the abstract symbols occurring in the theory of
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eigenvalues of the preceding chapter. Equation (1) of that chapter, for instance,
gives ∑

q

αpqaq = aap.

If the matrix αpq is known, then we have here an ordinary set of simultaneous
algebraic equations for the unknowns ap and also the unknown a. Any value of a
for which these equations have a solution (not identically zero) may be called
an eigenvalue of the matrix αpq. lf we eliminate the unknowns ap, in which
the equations are linear and homogeneous, we get the determinantal equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α11 − a α12 α13 . . . .
α21 α22 − a α23 . . . .
α31 α32 α33 − a . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (12)

to determine the eigenvalues a. The eigenvalues of a matrix representing
an observable must, of course, be the same as the eigenvalues of the observable
itself.

21. Orthogonal Representations

We have not yet considered how φ-symbols are to be represented. We can always
treat φ's analogously to ψ's, so that we can take any complete set of independent
φ's, φp say, and call them the fundamental φ's of a representation. If we then
expand an arbitrary φ in terms of them, thus

φ =
∑
p

a∗pφp, (13)

the set of numbers a∗p will form the representative of this φ. Again if α is any
observable, we can multiply it into a fundamental φ, φp, obtaining a product φpα,
which we can expand in terms of the fundamental φ's, thus

φpα =
∑
q

αpqφq. (14)

The coe�cients αpq will then form the matrix that represents α. It may easily be
veri�ed that the matrix laws of addition and multiplication, equations (3), (4) and
(7), hold also for the representatives of observables in the present representation
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in terms of fundamental φ's. It should be noticed that the arrangement of
the su�xes in αpq requires the coe�cients on the right-hand side of (14) to occur on
the left of their respective φ-symbols, the opposite to what it was for equation (2).
The particular arrangement of su�xes chosen in (14), like that chosen in (2),
is necessary in order that we may have the multiplication law (7), which obeys
the su�x rule, instead of the multiplication law (8).

We can in this way get a representation of observables on the basis either of
a set of fundamental φ's or of a set of fundamental ψ's. The question now arises
whether a set of fundamental φ's and a set of fundamental ψ's can be such that
they both give the same representative for each observable. If this is so, we could
count them both as belonging to the same representation, so that we should
have one representation comprising representatives of both φ's and ψ's as well
as observables. A necessary condition for the fundamental φ's and fundamental
ψ's to give the same representatives for observables is that they shall be labelled
by the same set of su�xes p, q, r, . . . , which su�xes will then label the rows and
columns of the matrices. Thus to each fundamental ψ there will be a corresponding
fundamental φ having the same su�x. According to the notation that we have
used hitherto, when a ψ and a φ have the same su�x they are conjugate imaginary
symbols denoting the same state, but this will now no longer hold.

We have already used the same su�xes for the fundamental φ's in (14) as
for the fundamental ψ's in (2), so that we can investigate the consequences of
these equations on the assumption that the coe�cients αpq are the same in each,
for every observable α. If in (14) we change the summed su�x q to r and then
multiply by ψq on the right, we obtain

φpαψq =
∑
r

αprφrψq. (15)

Similarly, if in (2) we change the summed su�x p to r and then multiply by φp on
the left, we obtain

φpαψq =
∑
r

φpψrαrp. (16)

The right-hand sides of equations (15) and (16) can be equal for an arbitrary
observable α, i.e. for arbitrary αpq's, only provided

φpψq = 0 (p 6= q) (17)

and φpψq = c,

where c is a number independent of p. We may without essential loss of generality
take c = 1, so that we have

φpψp = 1. (18)
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Equations (17) and (18) can be combined in the single equation

φpψq = δpq. (19)

This is the condition that a set of fundamental φ's and a set of fundamental ψ's
may both be considered as belonging to one representation.

With the help of these conditions we can easily obtain explicit expressions for
the coe�cients in the expansions. Thus to determine the coe�cients ap occurring
in (1) for the expansion of an arbitrary ψ we have

φqψ = φq
∑
p

apψp =
∑
p

apδpq

= aq. (20)

Similarly the general coe�cient a∗p in (13) for the expansion of an arbitrary φ is

a∗q = φψq. (21)

Again, from (14) we obtain

φpαψr =
∑
q

αpqφqψr

= αpr (22)

which gives explicitly the elements of the matrix representing any observable.
This result could also have been obtained from (2).

In obtaining a general representation for both φ's and ψ's as well as observables,
we have had to abandon the notation of a φ and ψ which have the same su�x
being conjugate imaginary symbols denoting the same state, and this results in
the representation being inconvenient and not very useful. The fundamental φ's
and ψ's may, however, be such that each fundamental φ and ψ with the same
su�x are really conjugate imaginary symbols denoting the same state, in which
special case there is no need to abandon this notation. Such a representation is
a particularly useful one. It is called an orthogonal representation. The set of
states denoted either by the fundamental φ's or by the fundamental ψ's may be
called the fundamental states of the representation. The condition (17) shows that
these fundamental states are all orthogonal to each other and condition (18) shows
that the φ's and ψ's representing them are normalized.

The vector picture of φ's and ψ's provides us with a simple geometrical
interpretation of an orthogonal representation. In this vector picture each
φ-symbol and the conjugate imaginary ψ-symbol are to be pictured as conjugate
complex vectors. We can without inconsistency suppose that each fundamental φ
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and the conjugate imaginary fundamental ψ of an orthogonal representation are
to be both pictured by the same real vector. Condition (17) now shows that
these real vectors are all mutually perpendicular and condition (18) that they
are each of unit length, so that they form the basis for a rectangular Cartesian
system of co-ordinates. The numbers representing an arbitrary φ or ψ are now
its co-ordinates in this system. Since the system of co-ordinates is real, a φ and
the conjugate imaginary ψ, pictured as conjugate complex vectors, should have
conjugate complex co-ordinates, and thus they should be represented by conjugate
complex sets of numbers. It is easily veri�ed, by comparing equations (20) and (21),
that this is the case. Thus a state is represented by the same set of numbers
whether it is denoted by a φ or a ψ, apart from an uncertainty in the sign of i.

If α is a real observable, then from equation (22) we �nd that the elements of
the matrix representing it satisfy

αpr = αrp

in the case of an orthogonal representation. A matrix for which this condition
holds is called Hermitian. If in addition all the matrix elements are real, we have
αpr = αrp, i.e. the matrix is symmetrical. From (22) we also �nd that a diagonal
element αpp is equal to the average value, according to �11, of the observable for
the corresponding fundamental state ψp. If α is not a real observable, then its
conjugate complex observable α, de�ned in �10, has matrix elements to represent
it, given by

αpr = αrp. (23)

The matrix αpr may be called the conjugate complex matrix to αpr.

22. The δ Function

We have assumed throughout the above investigation of representations that
the number of fundamental ψ's, if not �nite, is at most in�nite enumerable, so that
each of them can be labelled by a su�x p taking only a discrete set of values.
For most dynamical systems of interest this condition is not ful�lled, the total
number of independent states being in�nite and equal to the number of points on
a line. In such cases we must label each of the fundamental ψ's by a su�x p that
can assume any value in a certain range. The condition (1), which expresses that
any ψ is a linear function of the fundamental ψ's, must now be rewritten with
an integral instead of a sum, thus

ψ =

∫
apψp dp . (24)
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The domain of integration is to be understood to be the whole range of p used for
labelling fundamental ψ's. The coe�cients ap form a function of the continuous
variable p.

It is not strictly true that every ψ can be expressed in the form (24) when
the coe�cients ap are restricted to be �nite, which is, of course, implied when
one says they form a function of the continuous variable p. An example of
a ψ that cannot be expressed in this form is one of the fundamental ψ's, ψq
say, itself. Another example is ∂ψq/∂q when ψq involves the parameter q in
a manner su�ciently continuous for this di�erential coe�cient to exist. It would
be inconvenient if throughout the subsequent theory we were continually being
reminded of the fact that there are exceptional ψ's which cannot be expressed in
the form (24). We get over the di�culty by allowing in�nities of certain types
to occur in the coe�cients ap, which enables every ψ formally to be expressed in
the required form. This is analogous to the device sometimes used in geometry,
of avoiding the exception of parallel lines to the rule that two straight lines always
meet in one point, by saying that parallel lines meet in a point at in�nity.

We observe that those that are not of the form of the right-hand side of (24)
with �nite ap can always be regarded as limits of ψ's that are of this form. We can,
for instance, express ψq by

ψq = lim
n→∞

∫
apnψp dp ,

where the coe�cients apn satisfy

lim
n→∞

∫
apn dp = 1,

lim
n→∞

apn = 0, (for p 6= q).

As one approaches the limit, apn becomes a function of p which vanishes for all
values of p except those very close to q and which is so large for values of p in
the immediate neighbourhood of q that its integral is unity. We can now say
formally that

ψq =

∫
apψp dp , (24′)

where ap = lim
n→∞

apn.

This ap, we can say, is an improper function of the variable p, having the value
zero for all values of p except q and the value in�nity for p = q, the in�nity being
such that its integral is unity. It is thus a function of the two variables p and q
which depends only on their di�erence, so that we can put

ap = δ(p− q), (25)
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where the improper function δ(x) is de�ned by∫ ∞
−∞

δ(x) dx = 1

δ(x) = 0 (for x 6= 0).

The introduction of the δ function into our analysis will not be in itself
a source of lack of rigour in the theory since any equation involving the δ
function can be transcribed into an equivalent but usually more cumbersome
form in which the δ function does not appear. The δ function is thus merely
a convenient notation. The only lack of rigour in the theory arises from the fact
that we perform operations on the abstract symbols, such as di�erentiation and
integration with respect to parameters occurring in them, which are not rigorously
de�ned. When these operations are permissible, the δ function may be used freely
for dealing with the representatives of the abstract symbols, as though it were
a continuous function, without leading to incorrect results. We can, in fact, even
give a meaning to the δ function of an observable, provided it has a continuous
range of eigenvalues, by means of the general de�nition of �15.

Certain elementary properties of the δ function, which are deducible from, or at
least consistent with, the de�nition, should be noted, namely,

δ(−x) = δ(x),

xδ(x) = 0 (26)

and
∫ ∞
−∞

f(x)δ(x− a) dx = f(a), (27)

where f(x) is any continuous function of x and a is any number, and the range
of integration is any range through the point a, the limits ∞ and −∞ being put
down merely for de�niteness. Thus the operation of multiplying by δ(x − a) and
integrating with respect to x is equivalent to the operation of substituting a for x.
This is still true when the operation is applied, not to an ordinary function f(x)
of x, but to a ψ-symbol or an observable involving the parameter x, provided it is
reasonably continuous in x. We are, in fact, making an application of this rule,
with the ψ-symbol ψp for f(x) and the number q for a, when we assert that (24′)
holds with ap de�ned by (25). A further property of the δ function is∫ ∞

−∞
δ(a− x) dx δ(x− b) = δ(a− b). (28)

To prove this relation we regard the left-hand side as a function of the number b
and put it equal to F (b). We see at once that F (b) = 0 if b is not equal to a, and
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also we have ∫ ∞
−∞

F (b) d b =

∫ ∞
−∞

δ(a− x) dx

∫ ∞
−∞

δ(x− b) d b

=

∫ ∞
−∞

δ(a− x) dx = 1.

Thus F (b) satis�es all the conditions that de�ne δ(b − a) and may hence be put
equal to δ(b − a) or δ(a − b). Equation (28) would have been obtained from
equation (27) if for f(x) we had substituted the improper function δ(x−b). This is
an example which illustrates how a δ function may be used as though it were a
continuous function without leading to incorrect results.

In order to put ∂ψq/∂q in the form of the right-hand side of (21) it is necessary
to use the derivative δ′(x) of the function δ(x). This derivative is, of course, an even
more discontinuous and improper function than δ(x) itself, but in many cases it
can also be used freely as though it were a continuous function of x without leading
to incorrect results. It has the elementary properties

δ′(−x) = −δ′(x),

xδ′(x) = −δ(x) (29)

and
∫ ∞
−∞

f(x)δ′(x− a) dx = −f ′(a), (30)

for any di�erentiable function of x, which may be a ψ-symbol or observable
involving x as a parameter. The second and third of these relations may be
obtained by di�erentiating (26) with respect to x and (27) with respect to a
respectively. The third one may also be veri�ed by an integration by parts, thus∫ ∞

−∞
f(x)δ′(x− a) dx =

[
f(x)δ(x− a)

]∞
−∞
−
∫ ∞
−∞

f ′(x)δ(x− a) dx

= −f ′(a)

from (27). A further property is∫ ∞
−∞

δ′(a− x) dx δ(x− b) = δ′(a− b), (31)

which may be obtained by di�erentiation of (28) with respect to a. It may also be
obtained from (27) if one puts b for a and then takes δ′(a−x) for f(x), and is then
an example of how the δ′ function may be used as though it were a continuous
function.
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If for f(x) in (30) we put ψp, p being the variable instead of x, and if we put
q for a, we get ∫ ∞

−∞
ψpδ

′(p− q) dp = −∂ψp/∂q.

This shows that ∂ψq/∂q may be expressed in the form of the right-hand side of (24)
with −δ′(p− q) for ap. By making use of higher derivatives of the δ function, one
can express ∂2ψq/∂q

2, ∂3ψq/∂q
3, &c., also in this form.

23.CaseofaContinuousRangeofFundamentalStates

We can now generalize the theory of the representation of states and observables
to apply to systems for which the number of independent states is equal to
the number of points on a line. The ψ on the left-hand side of (24) will be
represented by the numbers ap, that occur as coe�cients on the right-hand side,
or by the function ap of the continuous variable p. Also if α is any observable,
corresponding to (2) we can expand αψq in the form

αψq =

∫
ψp dpαpq, (32)

where the αpq are numbers, and these numbers, which form a function of the two
continuous variables p and q, will then represent the observable α. It is sometimes
convenient to call this function of two variables a matrix, in order that one may use
the same words in talking about the case (32) as about the case (2). The number
of rows and columns of such a matrix is equal to the number of points on a line.
Corresponding to the multiplication law (7), we now have

(αβ)pq =

∫
αpr d r βrq, (33)

which may be proved in an analogous way. Similarly, corresponding to (10),
we now have that the function bp of p representing αψ is given in terms of ap,
that representing ψ, by the relation

bq =

∫
αqp dp ap. (34)

If we regard the number c as an observable, its representative cpq, will,
by de�nition, be given by

cψq =

∫
ψp dp cpq, (35)
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so that cpq = cδ(p− q). (36)

The matrix representing unity is now that whose general element is δ(p − q) and
it still, of course, has the property of leaving unchanged any matrix when multiplied
into it on either the right- or left-hand side. If we compare these results with
the corresponding ones for the case of discrete fundamental ψ's, we see that the only
di�erence is that the two-su�x δ-symbol, de�ned by (9), is replaced by the δ
function of the di�erence of the two su�xes. It is a general rule that the two-su�x
δ-symbol is always to be replaced by the δ function in this way when one passes
from the case of sums to the case of integrals.

The connexion between the fundamental ψ's and the fundamental φ's of
the same representation now

φpψq = δ(p− q), (37)

which is obtained from (19) by replacing the two-su�x δ-symbol according to
the rule. This condition (37) implies that φpψq is in�nite. Thus the law of �8 that
any φ-symbol can be multiplied into any ψ-symbol, giving a number as product,
must be relaxed to allow the possibility of the product being in�nite.

When each fundamental φ and fundamental ψ with the same su�x are
conjugate imaginary symbols denoting the same state, we have, as before,
an orthogonal representation. We shall now consider the meaning of equation (37)
for an orthogonal representation. This condition (37) may be split up into the
two conditions

φpψq = 0 (p 6= q), (38)∫
φpψq dp = 1. (39)

The �rst of these, corresponding to (17), again expresses that any two fundamental
states are orthogonal. The second, corresponding to (18), is sometimes taken as
the de�nition of the normalization of ψq when the su�x q labelling the independent
states ψq takes on a continuous range of values, instead of the condition φqψq = 1,
which would now be mathematically useless, as it would require the φ's and ψ's
in (37) to be all multiplied by in�nitely small coe�cients. If, however, one changes
the de�nition of normalization in this way, one must remember that the laws
for the physical interpretation of the theory hold only for the old de�nition.
The general law given at the end of �11, that φqαψq is the average value of
the observable α for the state ψq provided φqψq = 1, is of universal applicability,
for the continuous as well as for the discrete case. It is true that for the continuous
case φqαψq will in general be zero when φqψq = 1, but, as the applications of
the theory will show, this is what the physics then requires. Only the ratios of
the averages of di�erent observables are then of interest, and for the calculation of
these the normalizing condition (39) is useful.
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With the help of (37) we obtain from (24)

φqψ = φq

∫
apψp dp =

∫
apδ(p− q) dp = aq, (40)

by making an application of (27). This result, corresponding to (20),
gives explicitly the coe�cients on the right-hand side of (24) representing ψ.
The conjugate imaginary φ is represented by the numbers a∗q = φψq, corresponding
to (21), which are the conjugate complex numbers to aq in the case of an orthogonal
representation. Again, from (32) we obtain

φrαψq =

∫
φrψp dpαpq =

∫
δ(r − p) dpαpq = αrq, (41)

which, corresponding to (22), gives explicitly the elements of the matrix
representing α. We no longer, however, have the result that a diagonal element
αqq is for an orthogonal representation the average value of α for the state ψq,
since the normalizing condition (37) which is here used is not the correct one for
physical interpretation. This result would give, if, for example, we took α equal to
unity, the value δ(q − q) = ∞, whereas the average value of unity must of course
be unity.

24. The Weight Function

It is sometimes convenient to modify equations (24) & (32), which de�ne
the representatives of a state and observable, by the introduction of a weight

function. We can take any function ρp of the variable p which is de�ned throughout
the range of p used for labelling the fundamental states and which has no zero
values, and put instead (24) & (32)

ψ =

∫
apψpρp dp , (42)

αψq =

∫
ψpρp dpαpq. (43)

We can now consider the new coe�cients ap and αpq to be the representatives
of the state and observable. This does not give any essential generalization of
the theory of representation, since the new representatives are connected with
the original ones by very simple relations. It is merely a device which is convenient
in certain applications of the theory, usually for increasing the symmetry
of the equations, or for making more direct the physical interpretation of
the representatives which will be given in �28. We could, of course, adopt the same
device in the case of a discrete set of fundamental states, but there do not seem
to be any examples for which it is then of any value.
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When the weight function ρ is introduced it must appear, not only in
the expansions (42) & (43), but in all formulas which involve an integral over
the parameter p that labels the fundamental ψ's, e.g. in the multiplication law for
two observables, equation (33), which becomes

(αβ)pq =

∫
αprρr d r βrp,

and in that for an observable with a ψ, equation (34), which becomes

bq =

∫
αqpρp dp ap.

Again, the number c, regarded as an observable, is no longer represented by
the right-hand side of (36), since instead of (35) we now have

cψq =

∫
ψpρp dp cpq,

which gives cpq = cρ−1p δ(p− q) = cρ−1q δ(p− q).

The unit matrix is thus changed from δ(p− q) to ρ−1p δ(p− q). This suggests that
equation (37) should be changed to

φpψq = ρ−1p δ(p− q), (44)

a conclusion which is con�rmed when one notes that the normalizing equation (39)
must be changed to ∫

φpψqρp dp = 1. (45)

We can now see what changes must be made in the representatives of states
and observables when the weight function is introduced. If we multiply the φp and
ψp of equations (37) and (38) by ρ−½p , they will then satisfy equations (44) and (45).

We must then multiply the ap of equation (24) by ρ−½p in order that it may satisfy

(42) and the αpq of equation (32) by (ρpρq)
−½ in order that it may satisfy (43).

These results are particular cases of the general rule that any symbol involving
the su�xes p, q, . . . gets multiplied by (ρpρq . . . )

−½ when the weight function is
introduced. From this rule one can see the necessity for the insertion of the factor
ρp in every integral with respect to the variable p, when one bears in mind that
the integrand must contain the su�x p twice.

25. General Case of Representation

In most of the applications of quantum mechanics the atomic system dealt with
has a still larger number of independent states than we have hitherto considered.
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The fundamental states of a representation can then be labelled conveniently only
by means of several su�xes p1, p2, . . . , pn, which can take on any values within
a given domain of the n-dimensional p-space. The generalizations which must now
be made in the preceding theory are quite obvious. We must have, for instance,
instead of (24) and (32), the expansions

ψ =

∫∫
. . . ap1p2...ψp1p2... dp1 dp2 . . . , (46)

αψq1q2... =

∫∫
. . . ψp1p2... dp1 dp2 . . . αp1p2...q1q2.... (47)

A state ψ is now represented by ap1p2... a function of the n-variables p1, p2, . . . ,
and an observable α by αp1p2...q1q2... `matrix' whose rows and columns are both
labelled by these same variables. The ψ-symbol ψq1q2..., one of the fundamental
states, is represented by

δ(p1 − q1)δ(p2 − q2) . . . δ(pn − qn) (48)

as may easily be veri�ed by substituting this expression for ap1p2... in (46) and
carrying out the integrations one by one with the help of (27). It is always this
product (48) that replaces the δ(p − q) of the one-dimensional case. In the same
way the ψ-symbol

∂

∂qm
ψq1q2... (m = 1, 2, . . . , n)

is represented by

−δ(p1−q1)δ(p2−q2) . . . δ(pm−1−qm−1)δ′(pm−qm)δ(pm+1−qm+1) . . . δ(pn−qn), (49)

as may easily be veri�ed with the help of (30). This expression di�ers from (48),
apart from the minus sign, only in the m-th factor.

We must make a still further generalization in order to include all the cases
of representation that occur in practice, namely, we must allow both sums and
integrals to occur together. In the one-dimensional case, for instance, we can have

ψ =
∑
P

aPψP +

∫
apψp dp (50)

The discrete set of numbers aP together with the continuous set ap now
represent the state ψ. They may be considered as a function of a variable
whose domain consists of a continuous range together with some discrete points.
In the many-dimensional case we can have sums for some of the variables and
integrals for others. The general rule applying to every case of representation is
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that a state is represented by a function whose domain is such that every point
of it corresponds to one of the fundamental states. There is no restriction on
the number of points in this domain or on their arrangement in the p-space
that labels them. Thus the domain may consist of discrete points together
with a number of continuous regions each having any number of dimensions.
An observable is represented by a matrix whose rows and whose columns are
in one-one correspondence with the points of this domain.

The equations of our previous theory of representation can all be taken over
without di�culty, but cannot very well be written down in a form that includes
all cases without an elaborate notation. We shall therefore take simply the case
when (50) holds as an illustration. Corresponding to (2) and (32), we now have,
for the de�nition of the representative of an observable,

αψQ =
∑
P

ψPαPQ +

∫
ψp dpαpQ,

αψq =
∑
P

ψPαPq +

∫
ψp dpαpq.

 (51)

There are thus four kinds of coe�cients in the representative of an observable,
typi�ed by αPQ, αpQ, αPq & αpq corresponding to the di�erent cases of discrete or
continuous values for the su�xes. Again, corresponding to (7) and (33), we now
have for the multiplication law for the representatives of observables,

(αβ)PQ =
∑
R

αPRβRQ +

∫
αPr d r βrQ,

(αβ)pQ =
∑
R

αpRβRQ +

∫
αpr d r βrQ,

(αβ)Pq =
∑
R

αPRβRq +

∫
αPr d r βrq,

(αβ)pq =
∑
R

αpRβRq +

∫
αpr d r βrq.

In each case there is a sum over R and an integral over r. The conditions (19) and
(37) become

φPψQ = δPQ, φpψQ = 0,

φPψq = 0, φpψq = δ(p− q).

These examples are su�cient to show how each equation is to be interpreted in
any of the various kinds of representation that may arise.
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We can make a �nal generalization by introducing a weight function in
the general case. This weight function ρ may be an arbitrary function of the
variables pm that label the fundamental ψ's, provided it never vanishes. It will
always appear along with the di�erentials dpm in any integration and will also
appear, to the power of −1, in the unit matrix.
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26. Eigenstates as Fundamental States of

a Representation

In the preceding chapter the idea of a representation of the abstract symbols
was introduced and was treated entirely from a general mathematical point
of view, the representatives being like co-ordinates of the symbols referred to
a general co-ordinate system. We must now consider particular representations,
i.e. co-ordinates referred to particular co-ordinate systems, which must be
singled out and speci�ed in a certain way. We shall �nd, incidentally, that
our representatives now often have direct physical interpretations. We shall
be concerned here and throughout the future work only with orthogonal
representations.

An orthogonal representation is built up on the basis of a complete set of
orthogonal states, forming the fundamental states. Such a set of states is obtained
most easily with the help of the theory of eigenvalues of Chapter III. If we take
a set of real observables that all commute, their simultaneous eigenstates form
a complete set and any two belonging to two di�erent sets of eigenvalues are
orthogonal. If the set of commuting observables is a complete one, then, as
shown in �17, there is only one eigenstate for each set of eigenvalues, so that
the eigenstates must now all be orthogonal. These eigenstates can therefore be
taken to be the fundamental states of a representation. Each of them is associated
with one set of eigenvalues, which may conveniently be used for labelling it, instead
of the arbitrary su�xes pm of the preceding chapter, which have no physical
meaning. Thus if the commuting observables are ξ1, ξ2, . . . , ξn and if we denote
the eigenvalues of ξm by ξ′m, ξ

′′
m, . . . a fundamental ψ may be written ψ(ξ1 ξ2 . . . ξ

′
n),

or simply ψ(ξ′) for brevity. In the same way a fundamental φmay be written φ(ξ′′).
The fundamental φ that is conjugate imaginary to ψ(ξ′) will be φ(ξ′).

The notation of primes and multiple primes to denote the eigenvalues of
an observable is very convenient and will be used generally in the future. A new
notation for the representatives of states and observables will now be introduced,

71
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which will greatly increase the symmetry in our equations. A general ψ-symbol
ψ is represented by a set of numbers, each of which is associated with one of
the fundamental ψ's and thus with one set of eigenvalues. That particular one of
the set of numbers which is associated with the eigenvalues ξ′1, ξ

′
2, . . . , ξ

′
n will be

written (ξ′1 ξ
′
2 . . . ξ

′
n|), or (ξ′|) for brevity. When it is necessary to particularize

the ψ-symbol by a su�x, k say, we can insert this su�x in the representative
of ψk to the right of the vertical line, thus (ξ′1 ξ

′
2 . . . ξ

′
n|k) or (ξ′|k). The reason

for this notation is that, as we shall see later, there is a remarkable symmetry in
the way (ξ′|k) involves the set of numbers ξ′, referring to one of the fundamental
ψ's, on the one hand, and the parameter k which speci�es the ψ that is being
represented, on the other. This symmetry is exactly expressed when one puts
the ξ′'s and the k to the left and right respectively. In a corresponding way
we shall write the representative of a general φ-symbol as (|ξ′) and of a particular
one, φk, as (k|ξ′). For the representative of an observable α, we shall write
the matrix element αpq, associated with the fundamental states ψp amd ψq,
as (ξ′1 ξ

′
2 . . . ξ

′
n|α|ξ′′1 ξ′′2 . . . ξ′′n), or as (ξ′|α|ξ′′) for brevity, where the ξ′'s and ξ′′'s

are the eigenvalues belonging to the fundamental states ψp and ψq respectively, or
ψ(ξ′) and ψ(ξ′′), as they would be written in the new notation.

Some of the equations of the preceding chapter will now be written in the new
notation to illustrate how it runs. Equations (3) and (4) become

(ξ′|α + β|ξ′′) = (ξ′|α|ξ′′) + (ξ′|β|ξ′′),
(ξ′|cα|ξ′′) = c(ξ′|α|ξ′′).

Equation (1) or (24), de�ning the representative of a ψ-symbol, becomes, if we take
for de�niteness the case when each of the ξ′m's has a continuous range of values,

ψ =

∫
ψ(ξ′) d ξ′ (ξ′|), (1)

where d ξ′ is short for the product d ξ′1d ξ
′
2 . . . d ξ

′
n and only one integral sign is

written to denote integration over all these variables. It should be noted how,
when one puts the d ξ′ in the proper place, all the ξ′'s in (1) occur together. This
is the new form of the su�x rule given near the end of �20. Equation (2) or (32)
of the preceding chapter, de�ning the representatives of an observable α, becomes
in the same way

αψ(ξ′′) =

∫
ψ(ξ′) d ξ′ (ξ′|α|ξ′′). (2)

Again, the multiplication law for the representatives of two observables,
equation (7) or (33), becomes

(ξ′|αβ|ξ′′) =

∫
(ξ′|α|ξ′′) d ξ′′′ (ξ′′′|β|ξ′′)
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and that for the representatives of an observable and a ψ, equation (10) or (34),
becomes

(ξ′|l) =

∫
(ξ′|α|ξ′′) d ξ′′ (ξ′′|k), (3)

where k speci�es the ψ-symbol ψk and l speci�es ψl = αψk. The conjugate complex
α of an observable α is now represented by

(ξ′|α|ξ′′) = (ξ′′|α|ξ′) (4)

corresponding to (23), and the representatives (ξ′|) and (|ξ′) of a ψ and its
conjugate imaginary φ are conjugate complex quantities.

The representation we are now considering is built up from a number of
commuting observables ξ1, ξ2, . . . , ξn, whose simultaneous eigen-ψ's are taken as
fundamental ψ's. Let us determine how one of these observables, ξm say, is itself
represented. Putting ψm for α in (2), we get

ξmψ(ξ′′) =

∫
ψ(ξ′) d ξ′ (ξ′|ξm|ξ′′). (5)

But since ψ(ξ′′) is an eigen-ψ of ξm, belonging to the eigenvalue ξ′′m we have

ξmψ(ξ′′) = ξ′′mψ(ξ′′) =

∫
ψ(ξ′) d ξ′ ξ′mδ(ξ

′ − ξ′′) (6)

where δ(ξ′−ξ′′) is short for the product δ(ξ′1−ξ′′1 )δ(ξ′2−ξ′′2 ) . . . δ(ξ′n−ξ′′n). Equating
coe�cients on the right-hand sides of (5) and (6), we obtain

(ξ′|ξm|ξ′′) = ξ′mδ(ξ
′ − ξ′′). (7)

This, of course, is equal to ξ′′mδ(ξ
′ − ξ′′) and is therefore symmetrical between the

singly and doubly primed symbols.
If the ξ′'s take on discrete sets of values instead of continuous ranges, we should

obtain instead of (7)
(ξ′|ξm|ξ′′) = ξ′mδξ′ξ′′ ,

where δξ′ξ′′ is short for the product δξ′1ξ′′1 δξ′2ξ′′2 . . . δξ′nξ′′n . Thus the observable ξm is

represented by a diagonal matrix, whose diagonal elements are its eigenvalues ξ′m.
A diagonal matrix, in the case of continuous ranges of rows and columns,
may conveniently be de�ned as one whose general element (ξ′, ξ′′) involves the δ
function δ(ξ′ − ξ′′) as a factor, like the right-hand side of (7), and the coe�cient
of the δ function may be de�ned as the general diagonal element. With these
de�nitions the above law in italics for the representative of ξm holds in all cases.
The appropriateness of this de�nition for a diagonal matrix in the continuous
case rests on the fact that, as is easily veri�ed, it makes two diagonal matrices
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always commute, which is one of the most important properties of diagonal
matrices in the discrete case. For this reason it would not be su�cient to de�ne
a diagonal matrix in the continuous case merely as one whose general element
(ξ′, ξ′′) vanishes except when the ξ′′'s di�er in�nitely little from the ξ′'s.

If f(ξ) is any function of the ξ's, then its representative is found to be,
by a similar argument to that leading to (7),

(ξ′|f(ξ)|ξ′′) = f(ξ′)δ(ξ′ − ξ′′) (8)

The coe�cient f(ξ′) must, of course, have a meaning since the function f must
be de�ned for each of the eigenvalues of the ξ′'s. Thus the representation
based on the simultaneous eigen-ψ's of a set of observables as fundamental ψ's
is such that the representative of each of the ξ's and of any function of them
is a diagonal matrix. Conversely, every diagonal matrix in this representation
represents a function of the ξ's, this function being speci�ed by the general diagonal
element (ξ′, ξ′′) regarded as a function of the variables ξ′.

Thus if we take any set of observables that commute, there will exist

a representation in which each of these observables simultaneously is represented

by a diagonal mairix. If the set of observables is a complete one, then
the representation will be completely determined by these observables, except
for arbitrary phases which arise from the fact that a simultaneous eigen-ψ of
these observables may be multiplied by any numerical factor of modulus unity
without any of the conditions de�ning it being invalidated. For example, we can
multiply each ψ(ξ′) by exp[−if(ξ′)], where f(ξ′) is an arbitrary real function of
the ξ′'s. This will require every representative of a state, (ξ′|), to be multiplied by
exp−if(ξ′) and every representative of an observable, (ξ′|α|ξ′′), to be multiplied
by exp i[f(ξ′) − f(ξ′′)]. A diagonal element (ξ′|α|ξ′) remains unaltered by this
transformation, as is necessary on account of its having the physical meaning of
an average. The arbitrary phases which thus arise in the representatives are usually
unimportant and trivial, so that we may count a representation as being completely
determined by the observables that are diagonal in it. This fact is already implied
in our notation, since the only indication in a representative of the representation
to which it belongs are the letters denoting the observables that are diagonal.

The representations considered in this section, in which each fundamental
ψ is a simultaneous eigen-ψ of a set of real commuting observables, are not of
a special kind, since every orthogonal representation has this property. In fact,
if we take any representation, having ψp, ψq, . . . as fundamental ψ's, we can then
form any diagonal matrix whose general element ξpq is of the form apδ(p − q),
where ap is a real function of p, and consider this diagonal matrix as representing
an observable ξ. This observable will be real if the representation is orthogonal.
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We shall then have

ξψq =

∫
ψp dp ξpq =

∫
ψp dp apδ(p− q) = aqψq,

so that each fundamental ψ, ψq, is an eigen-ψ of ξ. In the many-dimensional
case, when several su�xes p or q are required to label a fundamental ψ, we can
take several diagonal matrices and each will represent an observable ξ for which
the fundamental ψ's are all eigen-ψ's. We can obtain in this way a su�cient number
of observables ξ having the fundamental ψ's as eigen-ψ's to form a complete set.
The notation and methods of the present section can then be applied.

27. Canonical Transformations

If we take two representations, based respectively on the fundamental ψ's ψ(ξ′),
which are the simultaneous eigen-ψ's of a set of commuting observables ξm,
and the fundamental ψ's ψ(η′), which are the simultaneous eigen-ψ's of a set of
commuting observables ηm, then an arbitrary ψ will have the two representatives
(ξ′|) and (η′|), which are functions of the sets of variables ξ′m and η′m respectively.
Since a ψ is completely determined by its representative in any one representation,
there must be a connexion between the two representatives (ξ′|) and (η′|) such
that either is determined by the other. We shall now investigate the form of
this connexion.

From the de�nition of the representative (η′|) we have, if we take for de�niteness
the case of integrals,

ψ =

∫
ψ(η′) d η′ (η′|). (9)

Now each fundamental ψ of the η-representation, ψ(η′), will itself have
a representative in the ξ-representation. We may write this representative (ξ′|η′),
with η′ on the right to show which ψ it represents. We shall then have

ψ(η′) =

∫
ψ(ξ′) d ξ′ (ξ′|η′) (10)

for the de�nition of (ξ′|η′). Substituting this value for ψ(η′) in the right-hand side
of (9), we get

ψ =

∫∫
ψ(ξ′) d ξ′ (ξ′|η′) d η′ (η′|),

which gives, on comparison with equation (1) which de�nes (ξ′|),

(ξ′|) =

∫
(ξ′|η′) d η′ (η′|). (11)
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This is the transformation equation which gives the ξ-representative of a ψ-symbol
in terms of its η-representative. The corresponding equation which gives (η′|) in
terms of (ξ′|) may be shown in the same way to be

(η′|) =

∫
(η′|ξ′) d ξ′ (ξ′|), (12)

where (η′|ξ′) is the representative of the fundamental ψ, ψ(ξ′), in
the η-representation.

The two representatives (ξ′|) and (η′|) are thus linear functions of one another.
The expressions (ξ′|η′) and (η′|ξ′) which enable us to pass from one to the other
will be called transformation functions. They are each functions of the two sets of
variables ξ′ and η′. We can obtain an explicit expression for (ξ′|η′) by multiplying
equation (10) by φ(ξ′′) to the left, a process* corresponding to that used for getting
equation (40) of the preceding chapter. The result is

(ξ′|η′) = φ(ξ′)ψ(η′). (13)

Similarly it may be shown that

(η′|ξ′) = φ(η′)ψ(ξ′). (14)

Hence (ξ′|η′) and (η′|ξ′) are conjugate complex quantities.
The transformation functions must satisfy certain conditions in order that (11)

and (12) may be consistent. If we substitute for (η′|) in (11) its value given by
(12), we get

(ξ′|) =

∫∫
(ξ′|η′) d η′ (η′|ξ′′) d ξ′′ (ξ′′|).

But we have also

(ξ′|) =

∫
δ(ξ′ − ξ′′) d ξ′′ (ξ′′|).

Since these equations must hold for an arbitrary function (ξ′′|) of the variables ξ′′,
we can equate the coe�cients of (ξ′′|) on their right-hand sides. This gives∫

(ξ′|η′) d η′ (η′|ξ′′) = δ(ξ′ − ξ′′). (15)

An alternative way of obtaining this result is to apply equation (11) to
the ψ-symbol ψ(ξ′′). Since the η-representative of this ψ-symbol is (η′|ξ′′),
the right-hand side of (11) becomes

∫
(ξ′|η′) d η′ (η′|ξ′′), while the left-hand side

*that di�erent eigenstates are orthogonal
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becomes the ξ-representative of ψ(ξ′′), which is, of course, δ(ξ′−ξ′′). The equation
corresponding to (15) in which ξ and η have changed places, namely,∫

(η′|ξ′) d ξ′ (ξ′|η′′) = δ(η′ − η′′), (16)

may be similarly obtained. Equations (15) and (16) are the only conditions which
the transformation functions must satisfy identically. They are of the nature of
orthogonality and normalization conditions.

The transformation of the representatives of φ-symbols may be treated in
the same way. We should then �nd, for instance, the equation

(|η′) =

∫
(|ξ′) d ξ′ (ξ′|η′)

as the transformation equation which gives the representative (|η′) of an arbitrary
φ-symbol in terms of its representative (|ξ′), where the quantity (ξ′|η′) is now
de�ned as the η-representative of the fundamental φ, φ(ξ′), i.e. by the equation

φ(ξ′) =

∫
(ξ′|η′) d η′ φ(η′).

If we multiply this equation by ψ(η′′) on the right, we obtain, as an explicit
expression for this (ξ′|η′),

φ(ξ′)ψ(η′′) = (ξ′|η′′),
which is the same as (13). Thus this quantity (ξ′|η′), de�ned as the η-representative
of φ(ξ′), is the same as our previous one de�ned as the ξ-representative of
ψ(η′), so that our notation of using the same symbol for them both is justi�ed.
The symmetry which thus exists in the way the quantity (ξ′|η′) involves the ξ′'s and
η′'s is the same as that which was referred to in the preceding section when the new
notation for the representative of a state was introduced, since any representative
(ξ′|k) of a speci�ed ψ-symbol ψk, when suitably normalized, may be regarded as
the transformation function connecting the ξ-representation with a representation
in which ψk is one of the fundamental states.

Owing to the arbitrary phases occurring in representations, there will
be a corresponding amount of arbitrariness in the transformation functions.
If the fundamental states ψ(ξ′), ψ(η′) are multiplied by exp[−if(ξ′)], exp[−ig(η′)]
respectively, f and g being arbitrary real functions, the transformation function
(ξ′|η′) will get multiplied by exp {−i [f(ξ′)− g(η′)]}. Thus the modulus of
the transformation function is quite de�nite, the indeterminacy being only in
its phase.

The connexion between the representatives of an observable α in the two
representations may be easily obtained in a variety of di�erent ways. We can,
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for instance, use the explicit expression for the representative of α given by
equation (41) of the preceding chapter. Applying this to the ξ-representation,
we get

(ξ′|α|ξ′′) = ψ(ξ′)αψ(ξ′′)

If we now substitute for the right-hand side, which consists of the product of three
abstract symbols, their representatives in the η-representation, we get

(ξ′|α|ξ′′) =

∫∫
(ξ′|η′) d η′ (η′|α|η′′) d η′′ (η′′|ξ′′), (17)

which gives the ξ-representative in terms of the η-representative. Similarly we may
obtain the result

(η′|α|η′′) =

∫∫
(η′|ξ′) d ξ′ (ξ′|α|ξ′′) d ξ′′ (ξ′′|η′′), (18)

giving the η-representative in terms of the ξ-representative. These are
the transformation equations for the representatives of an observable.
Either representative is a linear function of the other, and the same transformation
functions are required for passing from one to the other as for the representatives
of states.

If we now take a third representation, ζ say, we shall have transformation
functions (ζ ′|ξ′),(ξ′|ζ ′), connecting it with the ξ-representation, and transformation
functions (ζ ′|η′), (η′|ζ ′), connecting it with the η-representation. There are simple
relations between the transformation functions. Equation (13), with ζ instead of
η, gives us

(ξ′|ζ ′) = φ(ξ′)ψ(ζ ′).

If we substitute for the right-hand side, which consists of the product of two
abstract symbols, their representatives in the η-representation, we get

(ξ′|ζ ′) =

∫
(ξ′|η′) d η′ (η′|ζ ′) (19)

The conjugate complex equation, which could be deduced independently in
the same way, is

(ζ ′|ξ′) =

∫
(ζ ′|η′) d η′ (η′|ξ′). (20)

Equations (19) and (20) give the ξ, ζ transformation functions in terms of the ξ,
η and η, ξ ones.

If we multiply equation (17) by d ξ′′(ξ′′|η′′′), putting the new factor on
the right-hand side of each term in order to maintain the `�uency' of the notation,
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and integrate with respect to ξ′′, we obtain∫
(ξ′|α|ξ′′) d ξ′′ (ξ′′|η′′′) =

∫∫∫
(ξ′|η′) d η′ (η′|α|η′′) d η′′ (η′′|ξ′′) d ξ′′ (ξ′′|η′′′)

=

∫∫
(ξ′|η′) d η′ (η′|α|η′′) d η′′ δ(η′′ − η′′′)

with the help of (16). Hence∫
(ξ′|α|ξ′′) d ξ′′ (ξ′′|η′′′) =

∫
(ξ′|η′) d η′ (η′|α|η′′′). (21)

We shall call either side of this equation (ξ′|α|η′′) and consider as it
the representative of the observable α in a mixed representation (ξ, η). It is, in fact,
a matrix su�cient to determine the observable α and di�ers from the representative
matrices we have previously considered only in that its rows and its columns refer
to two di�erent sets of fundamental states and are therefore no longer in one-one
correspondence with each other. The representative matrices of two observables
in mixed representations can be added provided they are both in the same mixed
representation, i.e. we have

(ξ′|α + β|η′) = (ξ′|α|η′) + (ξ′|β|η′).

Also they can be multiplied if they are in two di�erent mixed representations
such that the columns (speci�ed by the letter on the right-hand side) of the �rst
factor refer to the same set of fundamental states as, and are thus in one-one
correspondence with, the rows of the second, i.e. we can multiply (ξ′|α|η′) into
(η′|β|ζ ′) to give a product

(ξ′|αβ|ζ ′) =

∫
(ξ′|α|η′) d η′ (η′|β|ζ ′).

It should be noticed that the representative of unity in the mixed
(ξ, η) representation, i.e. (ξ′|1|η′), is just the transformation function (ξ′|η′) itself,
as follows at once from the de�nition (21). The terms `diagonal matrix' and
`diagonal element' of course have no meaning when applied to representative
matrices in mixed representations. Again, the representatives of the ξ's and
η's themselves in the mixed (ξ, η) representation are given by the following
expressions, as is easily veri�ed by using the left- and right-hand sides of (21)
respectively:

(ξ′|ξm|η′) = ξ′m(ξ′|η′),
(ξ′|ηm|η′) = (ξ′|η′)η′m.

}
(22)
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These representatives are thus expressible directly in terms of the transformation
function.

The equations of this section have all been written down for the case when
the parameters ξ′, η′, . . . , labelling fundamental states take on continuous ranges
of values. The necessary modi�cations to be made when some or all of them take
on discrete sets, or both discrete sets and continuous ranges, of values are obvious.
If in one representation ξ the ξ′'s take on, say, continuous ranges of values, then it is
not necessary that in another representation η, applying to the same dynamical
system, the η′'s should also take on continuous ranges of values, although if in one
representation the number of fundamental states is �nite, then it must be the same
in any other representation.

The transformations here discussed from one representation to another may
be called canonical transformations. One must take care not to confuse
them with contact transformations, de�ned in �19, as was frequently done in
the earlier literature on quantum mechanics. The two kinds of transformation
are mathematically of the same form, as one sees if one writes the canonical
transformation equations (17) and (18) symbolically with S and S−1 for
the transformation functions (ξ′|η′) and (η′|ξ′), but they have quite di�erent
meanings. The canonical transformation is a transformation from one
representation of observables to another representation of the same observables,
while the contact transformation is a transformation from one set of observables
to another di�erent set of observables. For the contact transformation the new
observables are connected with one another by the same algebraic and functional
relationships as the original ones, while the corresponding results for the canonical
transformation merely express the condition that the new representatives are
entitled to be called representatives of the same observables. The contact
transformation has its analogue in classical mechanics, as has been already
mentioned, but the canonical transformation, which is the more important one
in quantum mechanics, has, of course, no such analogue, since in the classical
theory we do not deal with representations.

28. Probability Amplitudes

Suppose observations to be made of each of a set of commuting observables ξm
when the system is in a given state ψ. The probability of any given set of
results being obtained is equal to, according to �18, the square of the modulus
of the corresponding coe�cient in the expansion of ψ (which is assumed to be
normalized) in terms of normalized simultaneous eigen-ψ's of the observables ξm.
If the observables ξm form a complete set, there will be only one simultaneous
eigen-ψ for each set of eigenvalues ξ′m and the coe�cients in the expansion of ψ



28. Probability Amplitudes 81

will form a representative of ψ, denoted by (ξ′|). The probability of the set of
results ξ′m being obtained now becomes |(ξ′|)|2. There is thus a physical meaning
for the ξ-representative of any normalized ψ, or at least for the modulus of this
representative, in terms of the probability for a given result being obtained for
a maximum observation consisting in measuring the complete set of observables ξm.
The same physical meaning can, of course, be given to the representative of
any normalized φ, which is just the conjugate complex of that of the conjugate
imaginary ψ.

Take now the case when ψ is one of the fundamental ψ's, ψ(η′), of another
representation η. The probability of the results ξ′ being obtained is now given
by |(ξ′|η′)|2, i.e. by the square of the modulus of the transformation function.
But the state ψ(η′) is the one for which the observables η certainly have
the values η′. Thus |(ξ′|η′)|2 gives the probability of the observables ξ having
the values ξ′ when the η's are known to have the values η′. For this reason
the expression (ξ′|η′) is called by Pascual Jordan a probability amplitude. There is,
as we saw in the preceding section, an uncertainty in its phase, but its modulus is
quite de�nite. The square of its modulus is an ordinary probability. Since

|(ξ′|η′)|2 = (ξ′|η′)(η′|ξ′) = |(η′|ξ′)|2

we have the reciprocal theorem, that the probability of the ξ's having the values

ξ′ when the η's are given to have the values η′ is equal to the probability of the η's
having the values η′ when the ξ's are given to have the values ξ′.

When the ξ′'s take on continuous ranges of values, then, as mentioned in �23,
the fundamental ψ's of a representation must be multiplied by an in�nitely small
numerical coe�cient in order that they may be properly normalized for the purpose
of physical interpretations. Further, the theorem of �18 that we have just used,
giving probabilities in terms of the coe�cients of an expansion, is no longer true
when the expansion consists of an integral. For these reasons the expression
we have obtained for the probability of the ξ's having particular values for a given
state does not hold in the continuous case. But in the continuous case in practice
we need to know only the probability of the ξ's having values lying within speci�ed

ranges. The probability of their having particular values is zero, as could be
deduced formally from the theory. The connexion between the probability for
the state ψ of the ξ's having values lying within small speci�ed ranges and
the representative of ψ, when the fundamental ψ's are normalized in accordance
with equation (37) or (39) of �23, will now be obtained. The method used will be
to obtain the case of continuous ξ′'s as a limiting form of the case of discrete ξ′'s
when there are very many of them lying very close together.

Take for de�niteness the case when there is only one ξ and suppose that
it has a very large number of discrete eigenvalues ξ′ lying very close together.
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Let the number of eigenvalues per unit range of ξ′ be s, which can vary with ξ′

in an arbitrary way. Suppose now that an arbitrary normalized ψ is expanded in
terms the eigen-ψ's, ψξ′ , which are correctly normalized for the purpose of physical
interpretations, i.e.

φξ′ψξ′ = 1, (23)

so that we have ψ =
∑
ξ′

cξ′ψξ′ . (24)

Then |cξ′|2 is the probability of ξ having the value ξ′ for this state ψ. We may
assume that cξ′ varies only slowly from one value of ξ′ to the next, so that the total
probability of ξ having a value lying within the range ξ′ to ξ′+ d ξ′, which is small
but still large compared with the interval between consecutive eigenvalues ξ′, will
be approximately

P = |cξ′ |2 s′d ξ′,

where s′ is the value of s when ξ′ is the value of its variable. With the same kind
of approximation we can replace the sum in (24) by an integral, which gives us

ψ =

∫
cξ′ψξ′s

′ d ξ′. (25)

We must now introduce eigen-ψ's, ψ(ξ′), that are normalized according to the rule
for the continuous case, i.e. ∫

φ(ξ′)ψ(ξ′′) d ξ′′ = 1. (26)

The change in the representatives caused by this change in the normalization of
the fundamental ψ's will be of the same nature as that studied in �24 caused
by a change in the weight function, except that in the present case in the limit
the change is in�nite.

To compare (26) with (23), we deduce from (23) the equation∑
ξ′′

φξ′ψξ′′ = 1,

which, written with an integral instead of a sum, gives∫
φξ′ψξ′′s

′′ d ξ′′ = 1.

Since the integrand here vanishes except when ξ′′ = ξ′, we can replace s′′ by (s′s′′)½.
Thus we can take

φ(ξ′) = s′ ½φξ′ , ψ(ξ′′) = s′′ ½ψξ′′ ,
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and equation (26) will be satis�ed. We now get from (25)

ψ =

∫
cξ′ψ(ξ′)s′

½
d ξ′ =

∫
ψ(ξ′) d ξ′ (ξ′|),

where (ξ′|), the representative of ψ according to the rule for the continuous case,
has the value

(ξ′|) = cξ′s
′ ½.

The probability P now becomes |(ξ′|)|2 d ξ′. Thus the square of the modulus of the

representative gives the probability, per unit range of ξ, of ξ having a given value.
In the case when there are several observables ξ, it may be shown in the same way
that the probability of each ξm having a value between ξ′m and ξ′m + d ξ′m is

P = |(ξ|)|2 d ξ′1d ξ′2 . . . d ξ′n = |(ξ′|)|2 d ξ′. (27)

Suppose now, in this case of continuous ξ′'s, that we take for ψ one of
the fundamental ψ's, ψ(η′), of the new representation η and suppose the η′'s to take
on discrete sets of values. The normalizing conditions (15) and (16) now become∑

η′

(ξ′|η′)(η′|ξ′′) = δ(ξ′ − ξ′′), (28)∫
(η′|ξ′) d ξ′ (ξ′|η′′) = δη′η′′ . (29)

These are just the correct normalizing conditions for us to be able to apply
the result (27). This is because the �rst of them gives

φ(ξ′)ψ(ξ′′) = δ(ξ′ − ξ′′), (30)

[since equation (28) is just equation (30) written in terms of η-representatives
instead of abstract symbols,] showing that the fundamental ψ's of
the ξ-representation are normalized in accordance with (26); while the second
of them gives

φ(η′)ψ(η′′) = δη′η′′ , (31)

[since equation (29) is just equation (31) written in terms of ξ-representatives
instead of abstract symbols,] showing that φ(η′)ψ(η′) = 1 or that ψ(η′) is
correctly normalized for the purpose of physical interpretations. Hence we have
the result that

|(ξ′|η′)|2 d ξ′ (32)

is the probability of the ξ's having values between ξ′ and ξ′+ d ξ′ when the η's are
given to have the values η′. The transformation function is still a sort of probability
amplitude. From (29) we obtain
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|(ξ′|η′)|2 d ξ′ = 1,

which shows that the total probability of ξ′ having any value is unity, giving a check
on the normalizing conditions.

When both the η′'s and the ξ′'s take on continuous ranges of values,
the transformation function can no longer be used to give actual probabilities
in any convenient way. It will still, however, give relative probabilities. Even when
(ξ′|η′) is not normalized with respect to η′ correctly for physical interpretations,
the expression (32) will still give the probability of the ξ's having values between
ξ′ and ξ′ + d ξ′, apart from a factor independent of ξ′. It will be found in
the applications that such relative probabilities are all that is then required.

The two main types of problem in quantum mechanics are to determine
the possible results of an experiment and to determine the probability of occurrence
of one of these possible results under given initial conditions. The �rst type consists
in calculating the eigenvalues of an observable, while the second always reduces
to calculating a probability amplitude or transformation function and taking
the square of its modulus. A general method for calculating the transformation
function connecting a set of ξ's with a set of η's, when algebraic relations between
the ξ's and η's are given, is as follows. First obtain the matrices (ξ′|ηm|ξ′′)
representing the η's in the ξ-representation, the only conditions that these matrices
need satisfy being the given algebraic relations. One can now use the equations∫

(ξ′|ηm|ξ′′) d ξ′′ (ξ′′|η′) = (ξ′|η′)η′m,

which follow at once from (21) and (22). These are linear integral equations
in the variables ξ′ for the unknowns (ξ′|η′). They are, in fact, the standard
equations of the theory of eigenvalues and the solutions, when normalized, are
just the transformation functions. These solutions are often called eigenfunctions
of the matrix (ξ′|ηm|ξ′′), which determines them. An application of this method
will be made in �35 to a case in which the integral equations reduce to di�erential
equations on account of (ξ′|ηm|ξ′′) involving the δ function and its derivatives.

29. Example

We have seen in �26 that if we have any set of observables ξm that commute
with one another, then there exists a representation, called the ξ-representation,
in which each of them is represented by a diagonal matrix, whose diagonal elements
are then its eigenvalues. This fact is of very great value in applications of the theory
and usually forms the starting-point in any calculation of representatives.
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To illustrate how it is used, two simple examples will now be given, which will
later be found to be of physical importance.

The �rst will concern the observables p and q satisfying

qp− pq = i,

which were introduced in �12. Our problem will be to �nd the eigenvalues of
p2 + q2. We shall assume that p and q are both real observables. We can then infer
by an elementary argument that p2 + q2 cannot have any negative eigenvalues.
We see that the eigenvalues of p2 cannot be negative, since they are the squares of
the eigenvalues of p, which are all real. It follows that the average value of p2 for
any state ψ cannot be negative. Similarly the average of q2 for this state ψ cannot
be negative. Hence the average of p2 + q2 for the state ψ also cannot be negative.
Thus p2 + q2 cannot have a negative eigenvalue, since if it did it would have
a negative average value, equal to this eigenvalue, for the corresponding eigenstate.

Let A = (p+ iq)(p− iq)
= p2 + q2 + i(qp− pq)
= p2 + q2 − 1.

We then have
(p− iq)(p+ iq) = p2 + q2 + 1 = A+ 2,

and hence
A(p+ iq) = (p+ iq)(p− iq)(p+ iq) = (p+ iq)(A+ 2).

We now rewrite this equation in terms of the representatives of the symbols it
involves, in a representation in which A is diagonal. This gives∑

A′′′

(A′|A|A′′′)(A′′′|p+ iq|A′′) =
∑
A′′′

(A′|p+ iq|A′′′)(A′′′|A+ 2|A′′),

which, since (A′|A|A′′′) = A′δA′A′′′ ,

reduces to A′(A′|p+ iq|A′′) = (A′|p+ iq|A′′)(A′′ + 2).

Hence either (A′|p+ iq|A′′) = 0 or A′ = A′′ + 2.

We have by a direct application of the matrix law of multiplication, where A′

is any eigenvalue of A,

(A′|(p+ iq)(p− iq)|A′) =
∑
A′′

(A′|p+ iq|A′′)(A′′|p− iq|A′), (33)

the summation being extended over all eigenvalues A′′. But we have seen that
(A′|p + iq|A′′) vanishes unless A′ = A′′ + 2. Thus all the terms in the summation
vanish except the one for which A′′ = A′ − 2. If, now, A′ − 2 is not an eigenvalue
of A, then all the terms in the summation will vanish without exception, and we
shall have

0 = (A′|(p+ iq)(p− iq)|A′) = (A′|A|A′) = A′.
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We have therefore obtained the result that if A′ is any eigenvalue of A, either A′−2
is another eigenvalue or A′ = 0. Thus if A′ is any eigenvalue, we shall have the
series of eigenvalues A′, A′−2, A′−4, A′−6, . . . , which cannot extend to −∞ since,
as we have already seen, there can be no negative eigenvalues for p2 + q2, which
is equal to A + 1. This series of eigenvalues must therefore terminate, and can
terminate only with the value zero. Thus the eigenvalues of A are 0, 2, 4, 6, . . . ,
and those of p2 + q2 are 1, 3, 5, 7, . . . .

The representatives of p and q can now easily be obtained. Equation (33)
reduces to

A′ = (A′|p+ iq|A′ − 2)(A′ − 2|p− iq|A′).

The two factors on the right here are conjugate complex quantities, on account of
equation (4). Hence

A′ = (A′|p+ iq|A′ − 2) = A′ ½eiγ
′
,

where γ′ is a real function of A′. All the elements not of this type of
the matrix representing p+ iq vanish. The conjugate complex observable p− iq is
represented by

(A′ − 2|p− iq|A′) = A′ ½e−iγ
′
,

with all the matrix elements not of this type vanishing. Hence

(A′|p|A′ − 2) = ½A′ ½eiγ
′
, (A′|q|A′ − 2) = −½iA′ ½eiγ′,

(A′ − 2|p|A′) = ½A′ ½e−iγ
′
, (A′ − 2|q|A′) = ½iA′ ½e−iγ

′
,

}
(34)

and all the matrix elements representing p and q that are not of these types vanish.
The occurrence of the arbitrary phase γ′ in these representatives for p and q is
in accordance with the remark of �26, that a representation is not completely
determined by the observables that are represented by diagonal matrices.

The eigenvalues of A form, as we have seen, a discrete set and hence
in the representation with A diagonal the number of fundamental states is
enumerable. This is rather remarkable in view of the fact that we can obtain
another representation in which the number of fundamental states is equal to
the number of points on a line, for example, the representation in which p is
diagonal, since, as shown in �19, the eigenvalues of p include all numbers from
−∞ to ∞. Thus by counting the number of independent states of a system in
di�erent ways, one may obtain di�erent cardinal numbers as result.
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30. Second Example

Our second example will concern three observables α, β, γ that satisfy

αβ − βα = iγ,

βγ − γβ = iα,

γα− αγ = iβ.

 (35)

Let α2 + β2 + γ2 = θ.

Our problem will be to determine the eigenvalues of α, β, γ and θ. We shall assume
α, β and γ are real. We can then infer that θ cannot have any negative eigenvalues,
by a similar argument to that at the beginning of our previous example.

We have
γα2 − α2γ = (γα− αγ)α + α(γα− αγ)

= iβα + iαβ

from the third of equations (35). Similarly

γβ2 − β2γ = (γβ − βγ)β + β(γβ − βγ)

= −iαβ − iβα.
Hence γ(α2 + β2)− (α2 + β2)γ = 0,

so that γθ − θγ = 0.

Thus θ commutes with γ, and therefore from symmetry it commutes also with α
and β. Hence it commutes with any function of α, β and γ.

We thus have an observable θ commuting with all the observables that occur
in the problem. Whenever we �nd an observable having this property, we should

expect to be able to treat it simply as a number in all subsequent investigations,
as by so doing we do not invalidate any of the algebraic equations that it
satis�es. A formal proof of the legitimacy of this proceeding is as follows. We use
a representation in which θ is diagonal, together with certain other observables,
κ say, so that any observable P is represented by (θ′κ′|P |θ′′κ′′). From the condition

θP − Pθ = 0

we obtain θ′(θ′κ′|P |θ′′κ′′)− (θ′κ′|P |θ′′κ′′)θ′′ = 0.

Hence (θ′κ′|P |θ′′κ′′) = 0

unless θ′ = θ′′. Thus all the matrix elements representing any observable in
the problem vanish unless they are of the type (θ′κ′|P |θ′κ′′). It follows that when
any equation between the observables is expressed in terms of their representatives,
all the matrix elements throughout the equation will refer to one and the same
value of θ′. This value for θ′ need not be explicitly referred to in the notation
for the matrix elements, so that we may write (θ′κ′|P |θ′κ′′) simply as (κ′|P |κ′′).
The equations will now be of exactly the same form as if θ were a number, equal
to this θ′, and we used a representation de�ned by the κ's without the help of θ.
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We shall apply this method to the present example. Thus we shall consider θ
to be a de�nite number and on this basis work out the eigenvalues of γ. Those of
α and β will be the same, from symmetry. Any numerical value that we give to θ
which is consistent with equations (35) will be an eigenvalue of θ. Since α and β
are real, we can infer that the average value of γ2 for any state cannot exceed θ and
hence the eigenvalues of γ2 cannot exceed θ. Thus the eigenvalues of γ cannot be
greater than θ ½ or less than −θ ½. The fact that any numerical value that we take
for θ must be positive or zero, since, as we have already seen, any eigenvalue of θ
must be positive or zero, makes this restriction on the eigenvalues of γ reasonable.
We have from (35)

(α + iβ)γ − γ(α + iβ) = −iβ − α
= −(α + iβ)

or (α + iβ)γ = (γ − 1)(α + iβ).

If we express this result in the γ-representation, we get

(γ′|α + iβ|γ′′)γ′′ = (γ′ − 1)(γ′|α + iβ|γ′′).

Hence either (γ′|α + iβ|γ′′) = 0 or γ′′ = γ′ − 1. Now if γ′ is any eigenvalue of γ,

(γ′|(α + iβ)(α− iβ)|γ′)
∑
γ′′

(γ′|α + iβ|γ′′)(γ′′|α− iβ|γ′), (36)

the summation being over all eigenvalues γ′′. The terms on the right-hand side all
vanish except the one for which γ′′ = γ′ − 1. If γ′ − 1 is not an eigenvalue of γ,
then they all vanish and we have

(γ′|(α + iβ)(α− iβ)|γ′) = 0

But (α + iβ)(α− iβ) = α2 + β2 − i(αβ − βα)

= α2 + β2 + γ

= θ − γ2 + γ

= θ + ¼− (γ − ½)2.

Hence if γ′ − 1 is not an eigenvalue of γ, we have

0 = (γ′|θ + ¼− (γ − ½)2|γ′)
= θ + ¼− (γ′ − ½)2

or γ′ = ½± k,
where k is de�ned as the positive square root

k = (θ + ¼)½ (37)

Thus if γ′ is any eigenvalue, we shall have the series of eigenvalues γ′, γ′ − 1,
γ′ − 2, . . . , which must terminate since there can be no eigenvalue less than −θ ½.
The last member of the series must be either 1

2
+ k or 1

2
− k, and since there is
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no eigenvalue greater than θ ½, and thus none greater than k, it must be 1
2
− k.

Thus the eigenvalues of γ are 1
2
− k, 3

2
− k, 5

2
− k, . . . .

If we reverse the order of the factors in the product whose representative occurs
on the left-hand side of (36), we can deduce by a similar argument that if γ′ is
any eigenvalue of γ, either γ′+ 1 is another eigenvalue or γ′ = −1

2
± k, and we can

infer from this that the eigenvalues of γ are k− 1
2
, k− 3

2
, k− 5

2
, . . . . By combining

these two results, we see that 1
2
− k and k− 1

2
must di�er by an integer, so that k

must be an integer or half an odd integer. The eigenvalues of γ are then

k − 1
2
, k − 3

2
, k − 5

2
, . . . ,−k + 3

2
,−k + 1

2
, (38)

which shows incidentally that k must not be zero, as follows also from its de�ning
equation (37). The corresponding value for θ is k2 − 1

4
, so that the eigenvalues of

θ are all of this form.
A new point that is brought out by this example is that if we have two

observables that commute and choose arbitrarily one of the eigenvalues of each,
then there will not necessarily exist a state for which each observable has its chosen
eigenvalue, i.e. a state that is a simultaneous eigenstate belonging to these two
eigenvalues. Thus the eigenvalues of γ include all integers and half odd integers,
and those of θ include all numbers of the form k2−¼ where k is an integer not zero
or half odd integer, but there exists a state for which γ and θ have the values γ′ and
k2 − ¼ respectively only provided γ′ is one of the numbers (38). Such restrictions
on the possible simultaneous eigenstates of two or more commuting observables do
not in any way invalidate our general theory.



VI. EQUATIONS OF MOTION

AND QUANTUM CONDITIONS

31. General Remarks

The theory that has been developed so far contains a complete account of
the new concepts and mathematical machinery required in quantum mechanics
and also all the general physical laws. Only the general properties of states
and observables have, however, been discussed, no reference being made to
the particular conditions that they satisfy in the case of a speci�ed dynamical
system. We must now consider the form of these particular conditions and so
make the theory applicable to given physical problems. It should be understood
that the assumptions that will now be made are on quite a di�erent footing from
the foregoing ones. We are now concerned not with general physical laws applying
to the whole of nature, but with special assumptions referring to a given physical
problem, such as the interaction of a certain number of electrons and atomic nuclei.
These assumptions will show how the information that we are dealing with a certain
number of particles of given masses interacting according to given laws of force is
to be made use of, and will give us equations which may be considered as forming
the mathematical speci�cation of which dynamical system is under consideration.
Future developments of the theory may show that these assumptions are only
approximate and require modi�cations; in fact, as they will now be formulated,
they are not in agreement with the principle of relativity and will at any rate
require modi�cations on this account when applied to rapidly moving particles.
On the other hand, the assumptions of the four preceding chapters are so closely
interconnected that one could hardly modify them in any way without getting an
entirely di�erent scheme of mechanics, and the successes of the theory are so great
as to make it fairly certain that no such modi�cations will be required, at least for
the purpose of explaining the ordinary physical and chemical properties of matter.
The theory of these four chapters is in agreement with the principle of relativity;
in fact it is so general that it is independent of any special relations between space
and time. We must, of course, for this to be true, adopt a more general de�nition
of an observable than the value of a variable at some instant of time, which we can

90
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do by considering an observable to be the quantity measured in any observation
and to be de�ned by the way the observation is made, together with the positions
of the various component parts of the observing apparatus and the times when
they are set working, if necessary. An observable now need not refer to an instant
of time in some frame of reference, so that there is no con�ict with relativity on
this account. For the non-relativistic theory of the present chapter the previous
de�nition of an observable is adequate.

If we are dealing with a given dynamical system, we shall have given dynamical
variables, whose values at any time are what we call observables, and we shall
require conditions that will determine the values of these variables at all times
when their values at some particular time are known. These conditions will
be the equations of motion of the system. In classical mechanics they would
be su�cient to form the mathematical speci�cation of the dynamical system
under consideration. This is not so, however, in quantum mechanics, where
additional relations are necessary for this purpose, which take the form of equations
connecting the values of the variables at a particular time, of such a nature that
they can replace the commutative law of multiplication of the classical theory.
These additional relations are called quantum conditions. It is only when

the quantum conditions are given as well as the equations of motion that we know as

much about the variables as in the classical theory and can consider the dynamical

system as mathematically completely speci�ed. The equations of motion and
quantum conditions are very closely connected with each other, and one cannot
make any progress in solving a problem until they are both known.

Our problem is now to determine the quantum conditions and equations of
motion for any given dynamical system, such as that formed by given electrons and
atomic nuclei interacting. It is known that classical mechanics gives an accurate
description of dynamical systems under certain limiting conditions, e.g. when
the masses are large. One would therefore expect to be able to obtain a theory
of these systems when the limiting conditions do not hold by making some
natural generalizations in the classical equations of motion and choosing quantum
conditions that form natural generalizations of the classical conditions that all
the variables commute. It will be found that one can in this way obtain
a quantum theory of individual dynamical systems analogous to the classical
theory. This quantum theory will not, however, include all the systems with which
one has to deal, but only a large and important class of them, there being systems
in the quantum theory which have no classical analogues (e.g. that consisting
of a photon interacting with an atom, which will be treated in Chapter XII),
for the treatment of which we must in each case choose special quantum conditions
and equations of motion, either by means of special theoretical considerations or
to �t experimental facts.
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32. Poisson Brackets

The classical equations of motion which we have to generalize may be written in
the form

dqr
dt

= q̇r =
∂H

∂pr
, ṗr = −∂H

∂qr
, (1)

where the q's and p's are a set of generalized co-ordinates and their canonically
conjugate momenta and H is the Hamiltonian, which is a given function of
the q's and p's for a given dynamical system and is equal to the energy when
it does not involve the time explicitly. These equations of motion involve partial
di�erential coe�cients, which in general have no meaning for dynamical variables
in the quantum theory. We get over this di�culty by observing that the equations
of motion (1), and also all other important equations of general classical dynamics,

can be written in a form in which they involve partial di�erential coe�cients only

through Poisson Bracket expressions, and that, as we shall now �nd, these bracket
expressions have their analogues in the quantum theory. Any two variables ξ
and η have a Poisson Bracket (abridged to P.B.), denoted by [ξ, η] and de�ned in
the classical theory by

[ξ, η] =
∑
r

{
∂ξ

∂qr

∂η

∂pr
− ∂ξ

∂pr

∂η

∂qr

}
. (2)

These P.B.'s owe their importance to the fact that they remain invariant under
a contact transformation (i.e. a transformation to a new set of canonical variables
p∗r, q

∗
r such that the form of the equations of motion (1) remains unaltered), which

results in the equations of motion being expressible in terms of P.B.'s. We have
in fact

q̇r = [qr, H], ṗr = [pr, H], (3)

and more generally, for any variable ξ,

ξ̇ =
∑
r

{
∂ξ

∂qr
q̇r +

∂ξ

∂pr
ṗr

}
=
∑
r

{
∂ξ

∂qr

∂H

∂pr
− ∂ξ

∂pr

∂H

∂qr

}
= [ξ,H]. (4)

To �nd the quantum analogues of these P.B.'s we shall note some of their general
properties and try to choose the quantum P.B.'s so that they shall have the same
properties. The following relations follow at once from the de�nition (2).

[ξ, η] = −[η, ξ], (5)

[ξ, c] = 0 (6)

where c is a number,
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[ξ1 + ξ2, η] = [ξ1, η] + [ξ2, η],

[ξ, η1 + η2] = [ξ, η1] + [ξ, η2],

}
(7)

[ξ1ξ2, η] =
∑
r

{(
∂ξ1
∂qr

ξ2 + ξ1
∂ξ2
∂qr

)
∂η

∂pr
−
(
∂ξ1
∂pr

ξ2 + ξ1
∂ξ2
∂pr

)
∂η

∂qr

}
= [ξ1, η]ξ2 + ξ1[ξ2, η],

[ξ, η1η2] = [ξ, η1]η2 + η1[ξ, η2].

}
(8)

Also the identity
[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0 (9)

is easily veri�ed. Equations (7) express that the P.B. [ξ, η] involves ξ and η linearly,
while equations (8) correspond to the ordinary rules for di�erentiating a product.

We can de�ne the quantum P.B. so that it also has all these properties, provided
the order of the factors ξ1 and ξ2 in the �rst of equations (8) is preserved throughout
the equation, as in the way we have here written it, and similarly for the η1 and
η2 in the second of equations (8). These conditions are su�cient to determine the
form of the quantum P.B. uniquely, as may be seen from the following argument.
We can evaluate the P.B. [ξ1ξ2, η1η2] in two di�erent ways, since we can use either
of the two formulae (8) �rst, thus,

[ξ1ξ2, η1η2] = [ξ1, η1η2]ξ2 + ξ1[ξ2, η1η2]

= {[ξ1, η1]η2 + η1[ξ1, η2]} ξ2 + ξ1 {[ξ2, η1]η2 + η1[ξ2, η2]}
= [ξ1, η1]η2ξ2 + η1[ξ1, η2]ξ2 + ξ1[ξ2, η1]η2 + ξ1η2[ξ2, η2]

and [ξ1ξ2, η1η2] = [ξ1ξ2, η1]η2 + η1[ξ1ξ2, η2]

= [ξ1, η1]ξ2η2 + ξ1[ξ2, η1]η2 + η1[ξ1, η2] + η1ξ1[ξ2, η2].

Equating these two results, we obtain

[ξ1, η1](ξ2η2 − η2ξ2) = (ξ1η1 − η1ξ1)[ξ2, η2].

Since this condition holds with ξ1 and η1 quite independent of ξ2 and η2,
we must have

ξ1η1 − η1ξ1 = i~[ξ1, η1],

ξ2η2 − η2ξ2 = i~[ξ2, η2],

where ~ must not depend on ξ1 and η1 or ξ2 and η2 and also must commute with
(ξ1η1− η1ξ1), so that it must be a number. We want the P.B. of two real variables
to be real, as in the classical theory, which requires that ~ shall be a real number
when introduced, as here, with the coe�cient i. We are thus led to the following
general formula for the quantum P.B. [ξ, η] of any two variables ξ and η,

ξη − ηξ = i~[ξ, η], (10)
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in which ~ is a new universal constant having the dimensions of action. In order
that the theory may agree with experiment, we must take ~ equal to h/2π, where
h is the universal constant that was introduced by Max Planck. It is easily veri�ed
that the quantum P.B. de�ned by (10) satis�es all the conditions (5), (6), (7),
(8) and (9). These conditions often provide a more convenient way of actually
evaluating a complicated P.B., by enabling one to express it in terms of simpler
P.B.'s whose values may be known, than that a�orded by a direct application
of (10).

33. Equations of Motion and Quantum Conditions

obtained from Analogy with the Classical Theory

The assumption that the P.B. de�ned by (10) is the analogue of the classical
one enables us to take over the classical equations of motion (3) and (4) into
the quantum theory and also any other classical equations expressible in terms
of P.B.'s. Further, the assumption that the P.B.'s of the p's and q's, which P.B.'s
in the classical theory have the values

[qr, qs] = 0, [pr, ps] = 0,

[qr, ps] = δrs,

}
(11)

have these same values in the quantum theory, provides us with quantum
conditions, since we can now, with the help of (5), (6), (7), (8), evaluate
the P.B. [ξ, η] of any two analytic functions ξ and η of the p's and q's and thus
obtain, by using (10), an equation for ξη − ηξ capable of replacing the classical
condition that ξη − ηξ = 0. We have thus solved the problem of obtaining
equations of motion and quantum conditions forming a natural generalization of
the classical theory. The classical theory is, in fact, given by the limiting case

~→ 0 of the quantum theory.*

The quantum conditions and equations of motion may be written without
the use of P.B.'s, if we eliminate the P.B.'s with the help of their de�ning equation
in the quantum theory, equation (10). We obtain in this way for the quantum
conditions (11)

qrqs − qsqr = 0, prps − pspr = 0

qrps − psqr = i~δrs,

}
(12)

and for the equation of motion (4)

i~ξ̇ = ξH −Hξ. (13)

The condition for a variable ξ to be constant is that it shall commute with
the Hamiltonian H.

*Original: ~ = 0
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The notion of P.B.'s is more fundamental in the quantum theory than in
the classical theory, as is shown by the fact that one can de�ne a P.B. in
the quantum theory without reference to a set of canonical variables, which
is not possible in the classical theory. For this same reason the notion of
a set of canonical variables is less important in the quantum theory than in
the classical theory. The notion of canonical variables is in the classical theory
a dynamical notion, but in the quantum theory it is merely an algebraic notion,
as the conditions de�ning when variables are canonical are then expressible by
algebraic equations (11) or (12). Equations (11) may be considered as de�ning
canonical variables also in the classical theory, but they then have no meaning
unless the qr, pr are functions of another set of variables q∗r , p

∗
r which are

given to be canonical, as otherwise the P.B.'s are unde�ned. A transformation
from one set of canonical variables to another is called in the classical theory
a contact transformation, and this name may conveniently be taken over into
the quantum theory. The transformations discussed in �19 evidently do transform
one set of canonical variables into another, since, as shown in �19, they leave
algebraic relations between the variables unaltered and the conditions for variables
to be canonical in the quantum theory are algebraic.

It should be understood that the symbols q, p, &c., in the equations we are
now dealing with really denote the values q(t), p(t), &c., of the variables at some
particular time t that is not speci�cally mentioned, so that our equations are
equations between observables depending on a parameter t. The ξ̇ in (4) and (13),
de�ned as the rate of change of the observable ξ(t) with respect to the parameter t,
is also an observable. For observables ξ(t), η(t) depending on a parameter t,
we have the laws

d

dt
(ξ + η) =

d

dt
ξ +

d

dt
η,

d

dt
(ξη) = ξ

dη

dt
+
dξ

dt
η,

which are consistent with the general quantum equation of motion (4) or (13), on
account of their analogy with (7) and (8) respectively.

It is legitimate for us to assume the quantum conditions (11) or (12) only for
one particular time, and we must then deduce that they hold at all times from
the equations of motion. We can do this by observing that, if equations (11) or (12)
hold at one particular time t, then the time-rate of change of their left-hand sides
must vanish at time t, so that they will hold also at time t+ d t, or alternatively
by observing that, from the general equation of motion (13), the values of the p's
and q's at time t+ d t are connected with their values at time t by an in�nitesimal
contact transformation of the type (29) of �19. In order that we may be able
to consider the commutative law of multiplication of the classical theory as
completely replaced by our quantum equations, it is necessary that we should
be able to evaluate expressions of the form ξ(t1)η(t2)− η(t2)ξ(t1). This we can do
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by using the equations of motion to express ξ(t1) and η(t2) in terms of the p's and
q's at some one time t and then applying the quantum conditions (12).

The equation of motion (4) or (13) must be generalized when ξ involves the time
explicitly as well as through the p's and q's. The classical generalization of (4) for
this case is

ξ̇ =
∂ξ

∂t
+ [ξ,H], (14)

which may be taken over directly into the quantum theory. The generalization of
(13) is thus

i~ξ̇ = i~
∂ξ

∂t
+ ξH −Hξ. (15)

The Hamiltonian H is a constant when and only when it does not involve
the time explicitly. The equations of motion are not a�ected by the addition
to the Hamiltonian of an arbitrary numerical constant, even one that varies with
the time.

We are now in a position to be able to work out all that we require for any
dynamical system when this system is speci�ed by a Hamiltonian functionH, given
in terms of the q's and p's and perhaps also containing t explicitly. It should be
observed that the order of the factors of products in the expression for H may be
important, since our variables do not now all commute, so that there is a greater
variety of Hamiltonians in the quantum theory than in the classical theory.
Thus for a given Hamiltonian of the classical theory there is not in general
a unique corresponding Hamiltonian of the quantum theory, so that when one
is given a dynamical system in the classical theory it is in general meaningless
to talk about the same system in the quantum theory. There are, however,
exceptions to this, it being possible in many cases to use the same language for
describing dynamical systems in the quantum theory as in the classical theory
without practical ambiguity. For example, one can describe a dynamical system
as that of a particle of mass m moving in a �eld of force derivable from a potential
function V . The Hamiltonian for this system in the classical theory would be,
when expressed in Cartesian co-ordinates,

H =
1

2m
(p2x + p2y + p2z) + V (x, y, z).

One can without ambiguity say that the same system in the quantum theory is
that having this same Hamiltonian, since this Hamiltonian does not contain any
product of the type xpx for which the order of the factors is important. It should
be remarked that this freedom from ambiguity in the passage from a classical
Hamiltonian to a quantum one can be maintained only provided one uses always
Cartesian co-ordinates, as in general di�erent quantum Hamiltonians would be
obtained, di�ering from one another by terms containing ~ as a factor, if one were
to take over the classical Hamiltonian expressed in di�erent kinds of curvilinear
co-ordinates.
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34. Schrödinger's Form for

the Quantum Conditions

In this section and the following one some of the more important consequences
of the quantum conditions (12) will be obtained. We shall here be concerned
exclusively with the values of the variables q, p at one particular time, which will
not be speci�cally mentioned.

Equation (26) of Chapter II is, apart from the numerical factor ~, the same
as the quantum condition connecting any co-ordinate qr with its conjugate
momentum pr. Thus we can take over the consequences of that equation and
apply them to our present qr and pr, with insertion of the factor ~ where necessary.
Equation (27) of Chapter II gives us in this way

fpr − prf = i~ df/dqr (16)

where f is any function of qr expressible as a power series. This equation evidently
holds also when f is a function of the other q's as well as qr, provided the total
di�erential coe�cient is replaced by a partial one. Again, from the argument at
the end of �19, we can infer that each qr and pr must have as eigenvalues all
numbers from −∞ to ∞. This would actually be the case, for instance, if they
were Cartesian co-ordinates and momenta of particles.

It will now be shown that, ignoring a certain inde�niteness, one can give
a meaning to the operator ∂/∂qr, applied to a ψ-symbol, or one can di�erentiate

a ψ with respect to an observable qr. The simplest way of treating this problem is
to suppose the ψ to be represented in a representation in which, amongst others,
the observable qr is diagonal. The representative (qr

′|) of ψ will be a function
of the variable qr

′, whose domain extends from −∞ to ∞, and can therefore be
di�erentiated partially with respect to qr

′, giving another function ∂(qr
′|)/∂qr ′ of

q′r de�ned for this same domain −∞ to ∞. This new function will represent
a ψ-symbol, which we de�ne to be ∂ψ/∂qr. It would, of course, be strictly
correct to say that one can give a meaning to the operator ∂/∂qr applied to
a ψ-symbol only provided for each ψ there is one unique ∂ψ/∂qr, i.e. provided
the above procedure for obtaining ∂ψ/∂qr gives a result independent of which of all
the possible representations in which qr is diagonal we use, and this is not the case.
There is thus an inde�niteness in the meaning of the operator ∂/∂qr applied to
a ψ-symbol, the extent of which we shall now investigate.

Let us take �rst the case of a system of one degree of freedom, so that there is
only one co-ordinate q and only one variable q′ in the representative (q′|) of a ψ.
By di�erentiating this representative we obtain ∂(q′|)/∂q′, the representative of
a possible ∂ψ/∂q, say (∂ψ/∂q)a. Now in the present one-dimensional case the most
general canonical transformation we can make such that q remains diagonal is
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that which involves the multiplying of the representative of any ψ-symbol by
an arbitrary phase factor. Thus the new representative of ψ will be of the form

(q′|)∗ = eiF
′
(q′|), (17)

where F ′ is short for F (q′), a real function of q′. If we use this new representation
to de�ne ∂ψ/∂q, we obtain a new ∂ψ/∂q, say (∂ψ/∂q)b, whose representative in
the new representation is

∂

∂q′
(q′|)∗ = eiF

′ ∂

∂q′
(q′|) + ieiF

′ dF ′

dq′
(q′|).

The representative of (∂ψ/∂q)b, in the original representation is therefore

e−iF
′ ∂

∂q′
(q′|)∗ =

∂

∂q′
(q′|) + i

dF ′

dq′
(q′|),

and hence
(
∂ψ

∂q

)
b

=

(
∂ψ

∂q

)
a

+ i
dF

dq
ψ. (18)

This is an equation giving the general connexion between two ∂ψ/∂q's. It shows
that the inde�niteness in the operator ∂/∂q consists in the possible addition of
an arbitrary imaginary* function of q.

In the n-dimensional case the general canonical transformation which leaves
a single q, qr say, diagonal is much more general than a mere change of phase
and thus the inde�niteness in the operator ∂/∂qr is much greater than in
the one-dimensional case. Whenever we use this operator, however, we shall deal
not with a single ∂/∂qr alone, but with the whole set ∂/∂q1, ∂/∂q2, . . . , ∂/∂qn
together, which will make only those meanings for the operators useful that
arise from a representation in which all the q's are simultaneously diagonal.
The arbitrariness in this representation is then again merely that of the phase,
like (17), and leads again to the form (18) for the connexion between two (∂/∂qr)'s,
namely (

∂ψ

∂qr

)
b

=

(
∂ψ

∂qr

)
a

+ i
∂F

∂qr
ψ, (19)

where F is now an arbitrary real function of all the q's. Thus the inde�niteness in
the operators ∂/∂qr now consists in the possible addition to each simultaneously
of a function of the q's, of the form i ∂/∂qr for the r-th. This small amount of
inde�niteness has, however, been attained only by our considering each ∂/∂qr as
not speci�ed by the observable qr alone, but by qr as one of a given complete set
of commuting observables q1, q2, . . . , qn.

*`pure' omitted
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The operators ∂/∂qr applied to ψ-symbols are linear operators that can be
applied to an arbitrary ψ and are thus just ordinary observables. We shall
call ∂/∂qr considered as an observable, πr. The representative of πr in
the q-representation used for de�ning ∂/∂qr is

(q′|πr|q′′)=−δ(q′1−q′′1)δ(q′2−q′′2). . . δ(q′r−1−q′′r−1)δ′(q′r−q′′r )δ(q′r+1−q′′r+1). . . δ(q
′
n−q′′n).

(20)
which is similar to expression (49) of Chapter IV. The matrix representing πr
is thus antisymmetrical, showing, according to equation (23) of �21, that πr is
an imaginary� observable. The form of (20) shows also that when πr is multiplied
into a φ-symbol, the result is

φπr = −∂φ/∂qr, (21)

in which ∂φ/∂qr is de�ned through its q-representative in the same way as
∂ψ/∂qr was.

The commutability relations connecting the π's with each other and with the q's
will now be obtained. For this purpose we use the fact, which is easily veri�ed,
that the operators ∂/∂qr applied to ψ-symbols obey the same laws as when applied
to ordinary functions. Thus

∂2ψ

∂qr∂qs
=

∂2ψ

∂qs∂qr
or πrπsψ = πsπrψ,

and hence πrπs − πsπr = 0. (22)

Again ∂

∂qs
(qrψ) = qr

∂ψ

∂qs
+ δrsψ

or πsqrψ = qrπsψ + δrsψ,

and hence qrπs − πsqr = −δrs. (23)

More generally, if f is any di�erentiable function of the q's,

∂

∂qs
(fψ) = f

∂ψ

∂qs
+
∂f

∂qs
ψ

or πsfψ = fπsψ + (∂f/∂qs)ψ,

and hence fπs − πsf = −∂f/∂qs. (24)

These relations (22), (23), (24)� could have been obtained alternatively directly
from the representatives (20), with the help of properties of the δ function given
in �22.

�`pure' omitted
�`.' omitted
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The relations (22) & (23) for the π's are, apart from a numerical factor −i~,
just the same as the quantum conditions (12) for the p's. Thus the observables
−i~πr satisfy the same commutability relations with each other and with the q's
as do the pr. Equation (24) now corresponds to (16), with the di�erence that (24)
has been shown to be valid for any di�erentiable function f, not merely for one
expressible as a power series. There exist many sets of observables πr, owing to
the inde�niteness in ∂/∂qr discussed above, but each such set must satisfy (22) and
(23) and thus give rise to a set of observables −i~πr with the same commutability
properties as the pr's. Any one of these sets, πr, is connected with any other, πra,
according to equation (19), by the relation

πr = πra + i∂F/∂qr. (25)

It will now be shown that there exists one set of πr's such that ps + i~πsa as just

equal to pr.
If we take any set of πr's, πra say, then from (23) and (12), ps + i~πsa must

commute with each qr and must therefore be a function of the q's only, i.e.

ps + i~πsa = fs(q). (26)

Each fs must be a real function of the q's, since both ps and −i~πsa are real
observables. Again, from (12) and (22), we obtain

0 = prps − pspr
= (−i~πra + fr)(−i~πsa + fs)− (−i~πsa + fs)(−i~πra + fr)

= −i~[πrafs + frπsa − πsafr − fsπra],
or πsafr − frπsa = πrafs − fsπra.

With the help of (24) we now �nd

∂fr/∂qs = ∂fs/∂qr

which shows that the functions fr are all of the form

fr = ∂G/∂qr,

where G is a function of the q's independent of r. Thus (26) becomes

pr = −i~πra +
∂G

∂qr
= −i~

(
πra +

i

~
∂G

∂qr

)
.

We can introduce a new set of πr's according to equation (25) taking F equal to
G/~, since F is an arbitrary real function of the q's and G is real. For these new
πr's we shall then have

pr = −i~πr. (27)
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Equation (27), which was discovered by Erwin Schrödinger, is a very
important one in applications of quantum mechanics. It is a consequence
only of the quantum conditions (12) and may be regarded as a new form in
which these quantum conditions may be expressed. It shows that we can take
a representation in which the q's are diagonal and in which each observable pr, when
mniultiplied into a ψ-symbol, is represented by the operator −i~∂/∂q′r operating
on the representative (q′|) of this ψ-symbol. When pr is multiplied towards the left
into a φ-symbol, it is then represented by the operator i~∂/∂q′r operating on
the representative (|q′) of this φ-symbol. If f(qr, pr) is any function of the q's
and p's, expressible as a power series in the p's, then it is equivalent to

f(qs,−i~πr), (28)

obtained from f(qs, pr) by substituting −i~πr for each pr. This is to be understood
as meaning that when f is multiplied into a ψ-symbol, its representative
is the operator f(q′s,−i~∂/∂q′r) operating on the representative (q′|) of this
ψ-symbol, and when multiplied into a φ-symbol, its representative is the operator
f̃(q′s, i~∂/∂q′r) operating on the representative (|q′) of this φ-symbol, where f̃ is
the function obtained from f by reversing the order of all the factors in each term.
The equation for determining the eigenvalues f ′ of f is thus�

f

(
q′s,−i

∂

∂q′r

)
(q′|) = f ′ · (q′|), (29)

which is an ordinary partial di�erential equation for the unknown function (q′|)
and unknown number f ′. When f is the Hamiltonian or energy of the system
(assumed not to involve the time explicitly), this becomes Schrödinger's equation
for the determination of the possible numerical values for the energy.

Equation (27) shows up the meaning of the indeterminacy in a representation
when only the observables that are to be diagonal in it are speci�ed. Corresponding
to each representation in which the q's are diagonal there exists one set of
observables conjugate to the q's [i.e. satisfying the same conditions as the p's
in (12)], whose representatives are of the specially simple form −i~ ∂/∂q′r [when
multiplied into a representative (q′|) of a ψ-symbol]. If we now take one particular
set of observables conjugate to the q's and require that the representatives of
these shall be of the specially simple form −i~ ∂/∂q′r, the representation is then
completely determined, except for a trivial phase factor eiγ, where γ is independent
of the q's, since the function F in (25) is completely determined by the condition
that −i~πr must equal pr, except for an arbitrary constant. The indeterminacy
in a representation when only the diagonal observables are speci�ed is of the

�Original `.' replaced by `·'
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same nature, although it cannot be discussed in the same way, when any of these
diagonal observables has no canonical conjugate, as is the case, for instance, when
its eigenvalues do not extend from −∞ to ∞.

From equations (27) and (24) we see that (16) holds also for functions f of
the q's that are not expressible as power series.

35. The Transformation Function (q′|p′)
The result (27) which we deduced with reference to the q-representatives of
ψ- or φ-symbols must be applicable also to the transformation functions connecting
two representations of which one is the q-representation, since these transformation
functions are nothing but the representatives in either of the representations of
the fundamental ψ's and φ's of the other. For instance the transformation function
(q′|α′) is the q-representative of ψ(α′). Hence from (27) the representative of
prψ(α′) is −i~ ∂(q′|α′)/∂q′r. This representative, equal to

∫
(q′|pr|q′′) d q′′ (q′′|α′),

may be written (q′|pr|α′) in the notation of mixed representations of �27, so that
we have

(q′|pr|α′) = −i~ ∂(q′|α′)/∂q′r. (30)

Similarly, if f(qs, pr) is any function of the q's and p's expressible as a power series
in the p's, we see from the result (28) that

(q′|f |α′) = f

(
q′s,−i~

∂

∂q′r

)
(q′|α′). (31)

Again, the transformation function (q′|α′) is the q-representative of φ(α′), so that,
remembering (21), we obtain from the result (27)

(α′|pr|q′) = i~ ∂(α′|q′)/∂q′r (32)

and from the result (28)

(α′|p|p′) = f̃

(
q′s, i~

∂

∂q′r

)
(α′|q′) (33)

We shall now apply (30) to calculate the transformation function (q′|p′)
connecting a co-ordinate q with its conjugate momentum p. We have

(q′|p|p′) = −i~ ∂(q′|p′)/∂q′.

But from equations (22) of Chapter V

(q′|p|p′) = (q′|p′)p′.
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Hence −i~ ∂(q′|p′)/∂q′ = p′(q′|p′).

This is a di�erential equation for the unknown function (q′|p′) of q′. lts general
solution is

(q′|p′) = a′eiq
′p′/~,

where a′ is an arbitrary function of p′.
We can determine the modulus of a′ by using the normalizing condition∫ ∞

−∞
(p′|q′) d q′ (q′|p′′) = δ(p′ − p′′).

This gives, when we put

(p′|q′) = (q′|p′) = a′e−iq
′p′/~,

the equation

a′a′′
∫ ∞
−∞

e−iq
′(p′−p′′)/~ d q′ = δ(p′ − p′′),

where a′′ is the value of a′ when p′′ is substituted for the p′ in it. By carrying out
the integration with respect to q′ we obtain

1

a′a′′
δ(p′ − p′′) =

i~
p′ − p′′

[
e−iq(p

′−p′′)/~
]q=∞
q=−∞

=
2~

p′ − p′′
[

sin q(p′ − p′′)/~
]q=∞

.

Integrating each side with respect to p′′, we now get

1

a′a′
= 2~

[∫ ∞
−∞

sin q(p′ − p′′)/~
p′ − p′′

dp′′
]q=∞

= 2~ [π]q=∞ = 2π~ = h.

Thus a′ = h−½eiγ
′
,

where γ′ is some real function of p′, and hence

(q′|p′) = h−½eiγ
′
eiq
′p′/~.

By suitably choosing the arbitrary phase in the p-representation we can remove
the phase factor eiγ

′
, which will leave us with

(q′|p′) = h−½eiγ
′
eiq
′p′/~. (34)

There is no arbitrary phase in the q-representation, since this phase is �xed when
we use equation (27) or (30).
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Our result (34) shows that the p- and q-representatives of a ψ-symbol are given
in terms of one another by the relations

(p′|) = h−½
∫ ∞
−∞

e−iq
′p′/~ d q′ (q′|),

(q′|) = h−½
∫ ∞
−∞

eiq
′p′/~ dp′ (p′|),

 (35)

Thus either of them is given by the components in the Fourier resolution of
the other. The transformation function connecting the n q's, q1, q2, . . . , qn, with
their n conjugate p's, p1, p2, . . . , pn, is given by simple multiplication,

(q′1q
′
2 . . . q

′
n|p′1p′2 . . . p′n) = (q′1|p′1)(q′2|p′2) . . . (q′n|p′n)

= h−n/2ei(p
′
1q
′
1+p

′
2q
′
2+p

′
nq
′
n··· )/~ (36)

36. The Space-displacement Operator

In �34 we saw how to give a meaning to the operator ∂/∂qr applied to a ψ-symbol.
For this purpose we had to make use of a representation in which qr is diagonal.
There are, however, certain cases in which one can give a meaning to this
operator independently of any representation, so that this meaning becomes of
more fundamental importance. These are the cases in which qr is the value (x say)
at a particular time of one of the Cartesian co-ordinates of the particle when
the system consists of a single particle, or of the centre of gravity of the whole
system in the general case. The operator ∂/∂x applied to a state is then connected
with the operator of displacement of the state in the direction of the x-axis, as will
now be shown.

Let ψ1 denote any state of the system, arising when the system is prepared in
a certain way. We now introduce that state ψ2 which is the same as ψ1 except for
being displaced through a distance δx (a number) in the direction of the x-axis
at the time t. To de�ne ψ2 rigorously, we must suppose all the apparatus used
in the preparation of ψ1 and all the external forces acting on the system up to
time t to be displaced through this distance δx, the external forces after time t
being unchanged. The state of the system after time t, which state is completely
de�ned in this way, will then be ψ2. We can now form the di�erence ψ2 − ψ1

and divide by δx and proceed to the limit δx → 0. The result of this procedure
will be a ψ-symbol which depends in some linear way on our initial ψ-symbol ψ1.
Thus we shall have

lim
δx→0

(ψ2 − ψ1)/δx = dxψ1,
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where dx is a linear operator, i.e. where

dx(ψ1 + ψ3) = dxψ1 + dxψ3,

for arbitrary ψ1 and ψ3. Our displacement procedure thus enables us to de�ne
a displacement operator dx, which, being a linear operator that can be multiplied
into any ψ-symbol, can be regarded as an observable.

The displacement operator dx is not completely de�ned owing to the fact
that the ψ-symbol ψ2 is unde�ned to the extent of an arbitrary numerical factor.
If we make the assumption that ψ2 shall have the same `length' as ψ1, i.e. that

φ2ψ2 = φ1ψ1,

then this arbitrary factor will be of the form eiγ, where γ is a real number.
Thus if ψ2

∗ is any alternative ψ2, we shall have ψ2
∗ = eiγψ2. Our new displacement

operator dx
∗ will now be given by

dx
∗ψ1 = lim

δx→0
(eiγψ2 − ψ1)/δx

= lim
δx→0

{
ψ2 − ψ1

δx
+
eiγ − 1

δx
ψ2

}
= dxψ1 + iaψ1,

where a is a real number, equal to the limit (assumed to exist) of γ/δx. Thus

dx
∗ = dx + ia,

so that the inde�niteness in our displacement operator consists of merely
an arbitrary imaginary number.

The series of operations by which, given any ψ-symbol ψ, we de�ned
the ψ-symbol dxψ may be applied also to any φ-symbol φ and will then give us
the φ-symbol dxφ. When dx is regarded as an observable it can be multiplied into
a φ-symbol to give a product φdx. The connexion between dxφ and φdx will now be
obtained. Any product of the form φψ is a number which must remain unchanged
when both the φ and ψ are displaced through the distance δx, and hence

dx(φψ) = 0.

Since dx is of the nature of a di�erentiation, we can use the ordinary law for
the di�erential coe�cient of a product, which gives us

(dxφ)ψ + φ(dxψ) = 0.
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When we consider dx as an observable, we have

φ(dxψ) = (φdx)ψ.

Hence (dxφ)ψ = −(φdx)ψ.

Since this is true for arbitrary ψ, we obtain

φdx = −dxφ,

which is the required connexion. This result is analogous to (21). It shows us that
the conjugate imaginary symbol to dxψr, which is, of course, just dxφr, is equal to
−φrdx, and hence allows us to infer that dx is an imaginary* observable, like the πr
of (21).

We shall now obtain the connexion between our new operator dx and
the operator ∂/∂x de�ned according to �34. We take a representation in which
x is diagonal. We suppose further that the phase of this representation is
independent of x, so that when a ψ-symbol is displaced in the direction of
the x-axis, its representative (x′|) is merely displaced an equal distance through
the domain of the variable x′. (If the phase were arbitrary, then when the ψ-symbol
is displaced its representative would be changed in some more complicated way.)
The representatives (x′|1) and (x′|2) of ψ1 and ψ2 are now connected by the relation

(x′|2) = (x′ − δx|1).

Thus the representative of dxψ1 will be

lim
δx→0

(x′ − δx|1)− (x′|1)

δx
= − ∂

∂x
(x′|1)

and hence dx = − ∂

∂x
. (37)

Equation (37) holds, of course, only for one of the possible operators ∂/∂x.
The others will di�er from this one in accordance with equation (18). It will now
be shown that the one for which (37) holds is the same as the one which, considered
as an observable πx, satis�es (27) or

px = −i~πx,

px being the momentum conjugate to x. This will mean that, with dx considered
as an observable,

px = i~dx. (38)

*`pure' omitted
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We prove this by observing that px and i~dx satisfy the same commutability
relations. When the ψ-symbol xψ is displaced through the distance δx the result
must be (x−δx)ψ2, in which x has been changed into x−δx, since the displacement
of apparatus required for the de�nition of the displaced ψ-symbol causes apparatus
that measures the observable x to become apparatus that measures x− δx.
Thus from the de�nition of dx

dxxψ1 = lim
δx→0
{(x− δx)ψ2 − xψ1}/δx,

= xdxψ1 − ψ1.

Hence dxx− xdx = −1. (39)

In the same way it may be shown that dx commutes with y, z, px, py, pz, and in
fact with every dynamical variable (at time t) independent of x. Thus px − i~dx
commutes with everything and must be a number. We may take this number
to be zero, on account of the arbitrary� number arising in the de�nition of dx,
and thus obtain (38).

Equation (38), which connects our displacement operator dx with
the momentum px, is an alternative way of expressing the quantum conditions (12)
or (27), in so far as they refer to the centre of gravity of the whole system,
and is perhaps the most fundamental of all ways of expressing them, showing
most clearly the underlying physical assumption. This equation (38) is quite a
plausible assumption for one to make for one's quantum conditions, apart from
the fact that it is derivable from equations (12), which were set up from analogy
with the classical theory, on account of its simplicity and generality and the fact
that it leads at once to the law of the conservation of momentum. When there
are no external forces acting on the system, we see from the de�nition of dx, that
it does not depend on the time t. Equation (38) then shows that the momentum
does not depend on t and is therefore constant.

37. The Time-displacement Operator.

Corresponding to the space-displacement operator dx of the preceding section,
we now introduce an analogous time-displacement operator dt, de�ned as follows.
If ψ1 is any ψ-symbol, we form the time-displaced ψ-symbol ψ2 by supposing all
the apparatus used in preparing ψ1 to be set in motion a time δt later and all
varying external forces acting on the system up to time t to be retarded a time δt.
The state of the system after this time t will then be our ψ2. We now take the limit
of (ψ2−ψ1)/δt and de�ne it to be dtψ1. We can consider dt to be an observable and,

�`additive' omitted
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as in the case of dx, can show that it is an imaginary� observable and that it is
completely de�ned except for an arbitrary, imaginary¶ numerical constant.

By means of this dt we shall deduce the equations of motion of the system.
In this way we shall establish the form of these equations without anywhere making
use of classical analogues. We introduce the real observable H de�ned by

−i~dt = H. (40)

Thus Hψ = −i~dtψ (41)

for arbitrary ψ. If we now take any observable ξ that is the value at time t of some
dynamical variable and apply (41) to the ψ-symbol ξψ, we obtain

Hξψ = −i~dtξψ.
We can evaluate the right-hand side here by the method used for deriving (39),
or more directly by making use of the fact that the ordinary law for the
di�erentiation of a product applies to the operator dt, so that

Hξψ = −i~(dtξ)ψ − i~ξ(dtψ).

It is now easily seen that dtξ is just the ordinary time di�erential coe�cient ξ̇.
(This is to be contrasted with the corresponding result for the dx operator, namely,
dx = −∂ξ/∂x.) We thus obtain

Hξψ = −i~ξ̇ψ + ξHψ,

which gives i~ξ̇ = ξH −Hξ.
This is of the same form as (13), with for Hamiltonian just the H de�ned in terms
of the time-displacement operator dt by (40).

The above argument is quite general and shows that the equations of motion for

any dynamical system are expressible in terms of a Hamiltonian in the form (13),
whether this system is one that has an analogue in the classical theory and is
describable in terms of canonical co-ordinates and momenta or not. The general
dynamical system in quantum mechanics is thus one in which the dynamical
variables satisfy arbitrary commutability relations, and there is a Hamiltonian
which is an arbitrary real function of them. More generally still, we may have
a system in which the Hamiltonian cannot be expressed as an analytic function
of dynamical variables and can be speci�ed only through its representative in
some representation, which representative may be an arbitrary Hermitian matrix.
An example of a system of this more general kind is provided by the problem,
considered in Chapter XII, of the interaction of a photon with an atom.

Corresponding to equation (37) we can prove the result

dt = − ∂

∂t
. (42)

�`pure' omitted
¶`pure' and `additive' omitted
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We must �rst give a meaning to the operator ∂/∂t applied to a ψ-symbol,
which we can do with the help of a representation in which a complete set of
commuting observables q1t, q2t, . . . , qnt are diagonal, which observables must be
the values at time t of a set of dynamical variables q1, q2, . . . , qn (which need not
necessarily have conjugate momenta p1, p2, . . . , pn). The representative of any
ψ-symbol ψ will now be a function of the n variables q′1t, q

′
2t, . . . , q

′
nt, the form of

this function depending in general on t. Thus we can regard this representative as
a function of the n + 1 variables q′1, q

′
2, . . . q

′
n, t, and as such can di�erentiate it

partially with respect to t and de�ne the resulting function to be the representative
of ∂ψ/∂t. We get in this way a general de�nition of the operator ∂/∂t in
which there is, of course, a considerable amount of inde�niteness, owing not
only to the arbitrary phases of the representation but also to the fact that
we can take di�erent sets of q's to be diagonal and will then in general get
di�erent results. We are interested, however, in only one of the operators ∂/∂t,
this being the one that is given when the phases of the representation do not
depend explicitly on t, so that when a time displacement δt is applied to a state,
the qt+δt-representative of the displaced state is the same function of its variables
q′t+δt that the qt-representative of the undisplaced state is of its variables q′t.
Thus to obtain the qt-representative of the displaced state we must substitute t−δt
for t in the qt-representative of the undisplaced state, considered as a function
of the n + 1 variables q′1, q

′
2, . . . , q

′
n, t. There is now complete analogy with

the x-displacement case, so that (42) follows in the same way as (37). The validity
of (42) shows that the operator ∂/∂t de�ned by a representation with phases
not explicitly dependent on t is independent of which set of q's are diagonal in
the representation. If we have one representation giving a ∂/∂t operator that
satis�es (42), we can obtain another by making any canonical transformation for
which the transformation function does not involve t.

From (41) and (42) we obtain

i~
∂ψ

∂t
= Hψ. (43)

This may be regarded as an alternative way of expressing the equations of motion
of the system. Expressed in terms of representatives, it gives us�

i~
∂

∂t
(q′t|) =

∫
(q′t|H|q′′t ) d q′′t (q′′t |), (44)

an equation which shows how the representative (q′t|) of a state, considered as
a function of the n+ 1 variables q′1, q

′
2, . . . , q

′
n, t, varies with t. When the qr have

�The case of continuous q′'s is taken for de�niteness, the usual modi�cations in the notation
being required for the discrete case.
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conjugate momenta pr, it reduces to the `ordinary'� di�erential equation

i~
∂

∂t
(q′t|) = H

(
q′t,−i~

∂

∂q′t

)
(q′t|). (45)

This equation was discovered by Schrödinger and is known as Schrödinger's wave
equation. It is very useful in applications of quantum mechanics since its solutions
have an immediate physical interpretation, the square of the modulus of any
solution giving the probability of the q's having speci�ed values for one particular
state throughout all time. It is called a wave equation because in many elementary
examples, as will be seen in the next chapter, its solutions are of the form of
waves moving through q-space. For this same reason the solutions are called
wave functions, even also in those examples where they have no resemblance
to waves.

When the Hamiltonian does not involve the time explicitly, the wave equation
in the form (45) or in the more general form (44) will have solutions that vary
periodically with the time, according to

(q′|) = (q′|)0e−iW
′t/~, (46)

whereW ′ is a number and (q′|)0 is independent of t. The equation that (q′|)0 must
satisfy is

W ′(q′|)0 =

∫
(q′|H|q′′) d q′′ (q′′|)0

= H

(
q′,−i~ ∂

∂q′

)
(q′|)0.

But this is just the equation for determining the eigenvalues of H, namely,
equation (29) with H for f . Thus W ′ is an eigenvalue of H or energy-level of
the system and (q′|)0 is an eigenfunction of H.

38. Heisenberg's Matrices

In the preceding section we dealt with a qt-representation, de�ned by observables
qt that are the values at time t of a set of dynamical variables q. We saw
that if the phases of the representation are suitably chosen, then Schrödinger's
equation holds, in the form (44) or (45), in which case the representation may
conveniently be called a Schrödinger representation. The condition for the phases
is such that, when a state is given a time-displacement δt, the qt+δt-representative of

�quote marks added
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the displaced state is the same function of its variables q′t+δt as the qt-representative
of the undisplaced state is of its variables q′t. This condition will hold in
an analogous form for observables. lf we take an observable ξt which is the value
at time t of a dynamical variable ξ, then the displaced observable will be ξt+δt.
We shall then have that the qt+δt-representative of the displaced observable,
namely (q′t+δt|ξt+δt|q′′t+δt), is the same function of its variables q′t+δt & q′′t+δt, as
the qt-representative of the undisplaced observable, namely (q′t|ξt|q′′t ), is of its
variables q′t & q′′t . This means simply that the form of the function (q′t|ξt|q′′t )
of the variables q′t & q′′t is independent of t. More concisely, one can say that
the Schrödinger representative of ξt is independent of t.

In general, when one wants a representation of observables, the Schrödinger one
would not be a convenient one to take, since it refers to a de�nite time t and gives
simple representatives only for those observables ξt referring to the same time t.
A convenient representation would now be one which makes no reference to any
time t, so that observables ξt1 , ηt2 , . . . , referring to di�erent times t1, t2, . . . , could
all be represented simultaneously and would all be on the same footing. For such
a representation we should have(

α′
∣∣∣∣dξtdt

∣∣∣∣α′′) =
d

dt

(
α′ |ξt|α′′

)
. (47)

Such a representation can easily be obtained when the Hamiltonian does not
involve the time explicitly. In the general case it is not so easy and is therefore
then not very useful.

When H does not involve the time explicitly we can take for the observables
α that are diagonal in our representation a complete set of commuting dynamical
variables that are constants of the motion. Then H will commute with the α's
and will be a function of them, represented by a diagonal matrix

(α′|H|α′′) = H ′δα′α′′ ,

H ′ being written for H(α′), for brevity. Our representation will now be one that
is independent of t (provided the phases are independent of t), so that equation
(47) holds. There is now a simple law for the variation of the matrix elements of
ξt with t. From the equation of motion (13) we obtain

i~(α′|ξ̇|α′′) = (α′|ξ|α′′)H ′′ −H ′(α′|ξ|α′′),

which, with the help of (47), becomes

i~
d

dt
(α′|ξ|α′′) = −(H ′ −H ′′)(α′|ξ|α′′).
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Hence (α′|ξ|α′′) varies with t according to the law

(α′|ξ|α′′) = (α′|ξ|α′′)0ei(H
′−H′′)t/~, (48)

(α′|ξ|α′′)0 being independent of t. The variation is thus periodic with the frequency

|H ′ −H ′′| /2π~ = |H ′ −H ′′| /~. (49)

This scheme of matrices, in which the Hamiltonian is diagonal and the matrix
elements all vary with the time according to the law (48), was discovered
by Werner Heisenberg in 1925 and was historically the �rst form of
quantum mechanics.

A diagonal element (α′|ξ|α′) does not vary with the time. This diagonal element
is the average value of ξ for a fundamental state ψ(α′) of the representation.
Thus for each fundamental state ψ(α′) the average value of any dynamical variable
ξ is a constant. The probability of ξ having any speci�ed value is therefore also
constant, since this probability is determined by the average value of functions
of ξ. Thus each ψ(α′) is a stationary state according to the de�nition of �3.
The fundamental states of a Heisenberg representation are stationary states.

Any eigenstate of H may be taken as a fundamental state of a Heisenberg
representation and is therefore a stationary state.

The matrices of Heisenberg's representation �t in very well with
the `anschaulich' forms of quantum theory in existence before quantum mechanics,
in particular with Bohr's theory of the atom. The fundamental states of
the representation are Bohr's stationary states (which are really stationary,
of course, only so long as one neglects the interaction of the atom with radiation)
and the eigenvalues ofH are Bohr's energy-levels. It follows that the frequency (49)
of matrix elements referring to two states α′ and α′′ is that of the quantum of
radiation emitted or absorbed according to Bohr's theory when the atom makes
a jump from one of these states to the other, as was assumed by Heisenberg in
his �rst work on quantum mechanics. There now arises a strong correspondence
between the matrix elements representing any dynamical variable and the Fourier
components of that variable in the classical theory for a multiply-periodic system.
This correspondence led Heisenberg to the assumption that the rate of spontaneous
emission of radiation of a system in the quantum theory can be obtained
from the classical formula if one substitutes in this formula for the Fourier
components of the total electric displacement of the system the corresponding
matrix elements. According to this assumption, a system having an electric
moment D (a vector) will, when in the state α′, emit radiation of frequency
ν = (H ′ − H ′′)/h, where H ′′ = H(α′′) is an energy-level, less than H ′, of some
state α′′, at the rate

4

3

(2πν)4

c3
|(α′|D|α′′)|2. (50)
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Also the distribution of this radiation over the di�erent directions of emission and
its state of polarization for each direction will be the same as that for a classical
electric dipole of moment

(α′|D|α′′) + (α′′|D|α′).

To interpret this rate of emission of radiant energy according to Bohr's theory,
we must divide it by the quantum of energy of this frequency, namely hν, and
call it the probability per unit time of this quantum being spontaneously emitted,
with the atomic system simultaneously dropping to the state α′′ of lower energy.
A justi�cation for these assumptions of Heisenberg will be obtained in Chapter XII,
where a quantum treatment of the interaction of an atomic system with radiation
will be given.

By altering the phases in a Heisenberg representation we can pass to
the Schrödinger representation in which the same α's are diagonal. Let us see
what is the connexion between the phases in the two cases. In the Schrödinger
representation the representative of any state will satisfy the wave equation

i~
∂

∂t
(α′|) =

∑
α′′

(α′|H|α′′)(α′′|) = H ′(α′|),

which can in this case be integrated directly and gives

(α′|) = (α′|)0e−iH
′t/~,

where (α′|)0 is independent of t. On the other hand, the representative of a state
in the Heisenberg representation will not depend on t, since the representation
and also, of course, the state do not in any way depend on t. Hence the phases
of the Schrödinger representation are e−iH

′t/~ relative to those of the Heisenberg
representation, a result which could have been obtained alternatively from
a comparison of (48) with the fact that the Schrödinger representative of
ξt is independent of t. There is thus a di�erence between the phases of
the Heisenberg representation, which are totally independent of t, and those of
the Schrödinger representation, which are explicitly independent of t. The explicit
independence of t for the Schrödinger representation means simply that any matrix
in this representation represents a function of the dynamical variables that does
not involve t explicitly.
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39. The Free Particle

In this chapter we shall consider some simple dynamical systems according to
quantum mechanics. The simplest of all systems is that of a particle in free
space. For this system we may take as dynamical variables the three Cartesian
co-ordinates x, y, z and their conjugate momenta px, py, pz. The Hamiltonian
in classical mechanics, when one takes into account the variation of the mass of
the particle with its velocity required by the principle of relativity, is

H = c(m2c2 + p2x + p2y + p2z)
½, (1)

where m is the rest-mass of the particle and c is the velocity of light,
and the positive square root is taken. This Hamiltonian may be taken over into
the quantum theory when one gives the meaning of �16 to the positive square root,
which one can do since the eigenvalues of m2c2 + p2x + p2y + p2z are all positive.

The momenta px, py & pz commute with H and are thus constants of
the motion, as in the classical theory. Again, the co-ordinates x, y & z vary
according to the equations

ẋ = [x,H] =
c2px
H

, ẏ =
c2py
H

, ż =
c2pz
H

, (2)

the same as in the classical theory. These equations may be veri�ed in the quantum
theory by an application of equation (16) of �34, which equation, as remarked
at the end of that section, holds also for functions that are not expressible as
power series. The general proof of this equation, however, required the use of
a representation. It is of interest to notice that we can deduce (2) by working in
abstract symbols and not making any use of representations, in the following way.
We have by a direct application of the quantum conditions

xH2 −H2x = c2(xp2x − p2xx) = 2i~c2px, (3)

or (xH −Hx)H +H(xH −Hx) = 2i~c2px. (4)

114
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Now H commutes with px and hence from (3)

(xH2 −H2x)H −H(xH2 −H2x) = 0,

which gives (xH −Hx)H2 −H2(xH −Hx) = 0.

We must now use the condition that (m2c2 + p2x + p2y + p2z)
½, being de�ned

as a square-root function, commutes with everything that commutes with
m2c2 + p2x + p2y + p2z, i.e. H commutes with everything that commutes with H2.
We have just seen that H2 commutes with xH −Hx and hence H must commute
with xH −Hx. We can now infer from (4) that

xH −Hx = i~c2px/H,

which gives the �rst of the equations (2). We thus have an illustration of the
fact that any result that may be obtained with the help of a representation
can also be obtained from the abstract symbols alone without reference to
representations, but that the method with a representation may be much quicker
and more convenient.

The Schrödinger equation for the Hamiltonian (1) is�

i~
∂

∂t
(x|) = c

{
m2c2 − ~2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)}½
(x|), (5)

where the x in (x|) stands for x, y and z. We have here on the right-hand side
the square root of an operator involving ∂/∂x, . . . which square root cannot be
expressed as a power series that is valid for the whole range of eigenvalues of px,
py & pz, namely −∞ to ∞. To give a meaning to such a function of an operator
we should in general have to make a canonical transformation to a representation in
which the observable corresponding to this operator is diagonal, when the meaning
would be as given in �15. Our present example is, however, su�ciently simple for
this not to be necessary. We can write down solutions of (5) immediately, namely

(x|) = a exp i(p′xx+ p′yy + p′zz −W ′t)/~, (6)

where p′x, p
′
y, p

′
z, W

′ are numbers satisfying

W ′2 = c2(m2c2 + p′x
2

+ p′y
2

+ p′z
2
), W ′ > 0

and a is an arbitrary number. The general solution of (5) can be expressed as
a sum or integral of solutions of the form (6).

�The primes are omitted from the variables in the wave function. This is permissible when
it does not lead to confusion.
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The state represented by (6) is an eigenstate for the components of momentum,
belonging to the eigenvalues p′x, p

′
y & p′z. The corresponding value for the energy

is W ′. The representative (6) is, in fact, of the same form as the transformation
function (36) of �35. Thus the state of a particle moving in free space with a given
momentum is represented by plane waves of the type (6), the direction of motion
of the waves being determined by (p′x, p

′
y, p
′
z), the momentum of the particle.

The probability of the particle being found in any speci�ed volume dxd yd z at
time t is proportional to |(x|)|2 dxd yd z and is thus independent of the position of
this volume. The wave-length λ of the waves is given by

λ = h/(p′x
2

+ p′y
2

+ p′z
2
)½ = h/P ′, (7)

where P ′ is the magnitude of the momentum of the particle, and their frequency
ν is given by

ν = W ′/h. (8)

Thus their velocity u is
u = λν = W ′/P ′ = c2/v, (9)

where v is the velocity of the particle.
The fact that the velocity of the waves and the velocity of the particle both

lie in the same direction and are connected by the relation (9) holds, of course,
in all Lorentz frames of reference. It was this relativity invariance which �rst
led Louis de Broglie, before the discovery of quantum mechanics, to postulate
the existence of waves of the type (6) associated with the motion of a particle,
which waves would control the particle in the same way in which light-waves
control photons. The case of the photon may be obtained from that of the free
particle by taking the rest-mass m equal to zero. The waves (6) then become just
the light-waves associated with the photon, apart from polarization considerations
and the fact that they involve an imaginary exponential instead of a sine or cosine.

40. Wave Packets

By superposing a number of solutions of the type (6) belonging to di�erent values
of the momentum p′ lying in the neighbourhood of a given value, one can obtain
a solution that, at every instant of time, vanishes (approximately) everywhere
outside a certain �nite region. Within this region the waves are approximately of
a single wave-length, corresponding to the given value of p′. This solution thus
forms a group of waves or wave packet. The velocity V of such a wave packet is
not equal to the velocity of the waves, but lies in the same direction and is given
by the hydrodynamical formula for group velocity

V =
dν

d(1/λ)
.
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With the help of (7) and (8), this becomes

V =
dW ′

dP ′
= c

d

dP ′
(m2c2 + P ′

2
)½ =

c2P ′

W ′ = v.

Thus the group velocity is the same as the velocity of the particle.
This important result was �rst obtained by de Broglie. It is capable

of wide generalizations. If we have any dynamical system describable by
a Hamiltonian H(q, p), which is an arbitrary function of canonical q's and p's,
then, if it is permissible to treat Planck's constant h as small so that terms
involving it as a factor may be neglected, the Schrödinger equation will admit

of solutions consisting of wave packets whose motions are along the trajectories of

the classical theory. The proof is as follows. The Schrödinger equation is

i~
∂

∂t
(q|) = H

(
q,−i~ ∂

∂q

)
(q|). (10)

We express the Schrödinger function (q|) as though it were of the form of
waves, thus

(q|) = eiS/~A,

where A and S are real functions of the q's, which give the amplitude and phase
respectively. The e�ect of the operator −i~ ∂/∂qr on (q|) is now

−i~ ∂

∂qr
(q|) = eiS/~

(
∂S

∂qr
− i~ ∂

∂qr

)
A (11)

and that of the operator i~ ∂/∂t is

i~
∂

∂t
(q|) = eiS/~

(
−∂S
∂t

+ i~
∂

∂t

)
A.

If f is any function of the operators −i~ ∂/∂qr expressible as a power series,
one �nds readily by repeated applications of (11)

f

(
−i~ ∂

∂qr

)
(q|) = eiS/~f

(
∂S

∂qr
− i~ ∂

∂qr

)
A.

Thus (10) becomes, after removal of the factor eiS/~,(
−∂S
∂t

+ i~
∂

∂t

)
A = H

(
q,
∂S

∂q
− i~ ∂

∂q

)
A. (12)

The right-hand side, considered as a function of the (∂S/∂q − i~∂/∂q)'s may be
expanded by Taylor's theorem as a power series in ~, which we are supposing to be
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a small number. The terms in this expansion are alternately real and imaginary.�

If we neglect all except the �rst two and equate these to the real and imaginary�

parts of the left-hand side of (12), we obtain

−∂S
∂t

= H

(
q,
∂S

∂q

)
(13)

and −∂A
∂t

=
∑
r

∂H(q, ∂S/∂q)

∂(∂S/∂qr)

∂A

∂qr
. (14)

Equation (13) is just the Hamilton-Jacobi equation of classical mechanics.
Thus the phase of the Schrödinger wave function is given by the principal function S
of the Hamilton-Jacobi theory when one counts ~ as small. Equation (14) is the one
that governs the amplitude A of the wave function. It shows that for any solution
S of (13) the amplitude remains constant along the trajectories given by

dqr
dt

=
∂H(q, ∂S/∂q)

∂(∂S/∂qr)
(15)

but is otherwise arbitrary. Thus we can take A to vanish everywhere except on
a certain group of neighbouring trajectories, along each of which it must have
a constant value. We obtain in this way a solution of the wave equation that
at any time vanishes everywhere outside a certain small region. There is a limit
to how small this region may be, imposed by the approximations we have made.
Our neglect of later terms in the Taylor expansion of the right-hand side of (12)
is justi�ed only provided

~
∂

∂q
A� ∂S

∂q
A.

This requires that A shall vary by an appreciable fraction of itself only through
a range of q in which S varies by many times ~, i.e. a range of q consisting of many
wave-lengths of the wave function. Thus our solution of the wave equation that
vanishes everywhere outside a certain small region is of the nature of a wave packet.
The motion of this wave packet is given by the trajectories (15), which are,
when one remembers that ∂S/∂qr is playing the part of pr, just the trajectories of
classical mechanics.

For the system consisting of a free particle, a wave packet represents a state
for which both the position and the momentum have de�nite numerical values
to a certain limited degree of accuracy. Such a state is of the kind that usually
occurs in practice, particularly if the particle has a large mass, since one usually
knows roughly both the position and the momentum of a particle with which

�`pure' omitted
�`pure' omitted
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one is dealing. If ∆x is the order of magnitude of the size of the wave packet,
then, when one resolves the packet into its Fourier components, the wave-lengths
of the di�erent components will be distributed over a range of order

∆λ = λ2/∆x.

From (7) this corresponds to a distribution of the momentum of the particle over
a range of order�

∆p = h/λ2 ·∆λ = h/∆x.

Thus we have ∆p∆x = h, (16)

which shows there is a theoretical limit to the accuracy with which both
the position and momentum may have de�nite numerical values together.
The relation (16) is known as Heisenberg's principle of indeterminacy. It shows
how, the more accurately the position of a particle is known, the greater
the indeterminacy in its momentum and vice versa. One would expect a principle
of this type to hold simply from the quantum condition

xp− px = i~.

It should be understood that (16) holds only in the most favourable case and
that the indeterminacies may be much greater than is implied by this equation.
In fact if one takes a wave packet for which (16) holds at one instant of time,
in course of time this packet will spread and ∆p∆x will increase. For a discussion
of this spreading and for a treatment of the motion of wave packets representing
particles in �elds of force, the reader is referred to papers by Earle Hesse Kennard
and Charles Galton Darwin�

Heisenberg's principle of indeterminacy applies also to general dynamical
systems describable by means of canonical q's and p's. We have seen that such
systems have states represented by wave packets moving in q-space. Any such
state is one for which both the q's and the p's have numerical values to a certain
degree of accuracy, the orders of magnitude of the minimum indeterminacy ∆qr in
a co-ordinate qr and ∆pr in the conjugate momentum pr being connected by

∆pr∆qr = h. (17)

�`·' replaces`.'
�See Kennard, E.H. Zur Quantenmechanik einfacher Bewegungstypen. Z. Physik 44, 326�352

(1927). https://doi.org/10.1007/BF01391200; andDarwin, C.G. (1927). Free Motion in theWave
Mechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 117(776), 258�293. doi:10.1098/rspa.1927.0179
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This general relation may be deduced in the same way as (16) from the connexion
between the size of a wave packet and the indeterminacy in the wave-length of its
waves, or it may be inferred directly from the quantum condition

qrpr − prqr = i~.

The states dealt with in classical mechanics, of a system composed of massive
particles or bodies, are represented by these wave packets and (17) gives the limit
of accuracy of the classical treatment.

41. The Harmonic Oscillator in One Dimension

We shall now consider the problem of the harmonic oscillator in one dimension.
The Hamiltonian for this system in classical mechanics is*

H = 1/2m · (p2 +m2ω2q2) (18)

wherem is the mass of the oscillating particle and ω is another numerical constant,
equal to 2π times the frequency. This Hamiltonian can be taken over into
the quantum theory and must then be supplemented by the quantum condition

qp− pq = i~ (19)

to give a completely determinate problem.
The equations of motion are easily veri�ed to be the same as in

the classical theory. We must now determine the eigenvalues of the HamiltonianH.
This question is the same as that dealt with in �29, there being a di�erence only in
the numerical constants, on account of the ~ in (19) and the 2m and m2ω2 in (18).
The present q is (~/mω)½ times the q of �29 and the present p is (~mω)½ times
the p of �29, which results in the present H being ½~ω times the (p2 + q2) of �29.
Thus from the result that the (p2+q2) of �29 has the eigenvalues 1, 3, 5, . . . , we can
infer that the present H has the eigenvalues

1
2
~ω, 3

2
~ω, 5

2
~ω, . . . .

These are the possible values for the energy of a harmonic oscillator in
the quantum theory.

We shall now obtain the Heisenberg matrices representing p and q. These can
be obtained readily from equations (34) of �29. Allowing for the change in the

*`·' replaces `.'
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numerical constants and remembering that the A of �20 is equal to (2H/~ω − 1),
we �nd

(H ′|p|H ′ − ~ω) = (½m)½(H ′ − ½~ω)½ei(ωt+γ)

(H ′ − ~ω|p|H ′) = (½m)½(H ′ − ½~ω)½e−i(ωt+γ)

(H ′|q|H ′ − ~ω) = −i/(2m)½ω · (H ′ − ½~ω)½ei(ωt+γ)

(H ′ − ~ω|q|H ′) = i/(2m)½ω · (H ′ − ½~ω)½e−i(ωt+γ)

 (20)

when the correct time-factors are included. In the classical theory we have,
when we express p and q as Fourier series,

p = (2mH)½ cos(ωt+ γ) = (½mH)½{ei(ωt+γ) + e−i(ωt+γ)}
q = (2H/m)½ω−1 sin(ωt+ γ) = (H/2m)½ω−1{−iei(ωt+γ) + ie−i(ωt+γ)}

This shows up the correspondence between the Fourier components of the classical
theory and the Heisenberg matrix elements. The classical Fourier components are,
of course, equal to these matrix elements when one neglects ~.

If the oscillator carries an electric charge ε, its electric moment will be εq.
According to Heisenberg's assumption, given in �38, for the spontaneous emission
of radiation, the oscillator will then emit only radiation of frequency ω/2π since
all the matrix elements of q vanish except those mentioned in (20). This result
is the same as in the classical theory. When the oscillator is in a state of energy
H ′ = (n + ½)~ω, or, as we may say, when it is in its n-th quantum state, its rate
of emission of radiation, according to (50) of �38, will be

4

3

ω4

c3
ε2

2mω2
(H ′ − ½~ω) =

2~ε2ω3

3mc3
n (21)

giving a probability* 2ε2ω2/3mc3 · n per unit time of the oscillator jumping from
state n to state n − 1. In the state of lowest energy, for which n = 0, there is no
emission of radiation.

In the classical treatment of periodic and multiply-periodic dynamical systems
it is often convenient to make use of action and angle variables. We can introduce
corresponding variables in the quantum theory. In our present problem of
the harmonic oscillator we can de�ne the action variable J by

J = H/ω − ½~. (22)

It is a constant of the motion and its eigenvalues are integral multiples of ~
greater than or equal to zero. Thus its matrix representative in the Heisenberg
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representation is

0 0 0 0 0 . .
0 ~ 0 0 0 . .
0 0 2~ 0 0 . .
0 0 0 3~ 0 . .
0 0 0 0 4~ . .
. . . . . . .

when the rows and columns are arranged in order of ascending energy-levels.
To de�ne the angle variable we introduce the two matrices

0 0 0 0 0 . .
1 0 0 0 0 . .
0 1 0 0 0 . .
0 0 1 0 0 . .
0 0 0 1 0 . .
. . . . . . .

0 1 0 0 0 . .
0 0 1 0 0 . .
0 0 0 1 0 . .
0 0 0 0 1 . .
0 0 0 0 0 . .
. . . . . . .

in which the non-vanishing elements are just to the left and just to the right
of the principal diagonal respectively, and call the variables that they represent
at time t = 0, eiw and e−iw respectively. These two matrices are conjugate
complex, according to the de�nition of �21, and thus represent conjugate complex
observables, in agreement with what is implied by the notation of eiw and e−iw.
This notation implies further, however, that the two matrices are the reciprocals of
one another and this is not altogether true. The matrix representing the product
e−iweiw is, in fact, just the unit matrix, but that representing eiwe−iw di�ers from
the unit matrix through having zero for its �rst diagonal element. Thus

e−iweiw = 1, eiwe−iw 6= 1. (23)

The variables eiw & e−iw, de�ned above through their matrix representatives,
are the best quantum analogues that we can get to the exponentials of i and
−i times the angle variable of the classical theory. They have many properties
analogous to those of their classical counterparts and their only serious defect is
that eiwe−iw is not quite equal to unity. Thus, for example, we obtain at once from
the matrices the relations

eiwJ = (J − ~)eiw,

e−iwJ = (J + ~)e−iw,

}
(24)

which are equivalent to the classical relations

[eiw, J ] = ieiw, [e−iw, J ] = −ie−iw.
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Equations (24), when compared with equation (28) of Chapter II, are seen to be
consistent with the view that J and w are conjugate dynamical variables satisfying
the relation

wJ − Jw = i~,

although actually this relation is meaningless since we cannot de�ne w itself but
only e±iw. Again, the dynamical variable eiw at an arbitrary time t must be
represented by a matrix whose elements vary with t according to the Heisenberg
law ei(H

′−H′′)t/~. Since all the matrix elements vanish except those referring to
consecutive energy-levels for which H ′−H ′′ = ~ω, every matrix element will vary
with the time according to the law eiωt. This corresponds to the fact that in the
classical theory w increases linearly with t at the rate ω.

The co-ordinate and momentum q and p can be expressed in terms of the action
and angle variables. The momentum p, for instance, is, according to (20),
represented by the matrix

(½m~ω)½· 0 1 0 0 0 . .
1 0

√
2 0 0 . .

0
√

2 0
√

3 0 . .
0 0

√
3 0 2 . .

0 0 0 2 0 . .
. . . . . . .

with disregard of trivial phase factors, and hence

p = (½mω)½(J½eiw + e−iwJ½).

q = (2mω)−½(−iJ½eiw + ie−iwJ½).

}
(25)

Similarly
We see from these equations that p and q, when expressed in terms of the action
and angle variables, involve them only through the two combinations J½eiw

and e−iwJ½. Further, all dynamical variables that we may have to deal with
to obtain any physical result must be functions of p and q and will therefore,
when expressed in terms of the action and angle variables, involve them only
through the two quantities J½eiw and e−iwJ½. Now it is easily veri�ed from
the matrix representatives that these two quantities are respectively equal to

J½eiw = eiw(J + ~)½

e−iwJ½ = (J + ~)½e−iw

}
(26)

and
and that their products in either order are�

J½eiw · e−iwJ½ = J,

e−iwJ½ · J½eiw = (J + ~)½e−iw · eiw(J + ~)½ = J + ~.
�`·' replaces `.'
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These results hold in spite of the inequality in (23). They show that when we
are dealing with dynamical variables of physical importance, which can involve
the action and angle variables only through the two quantities J½eiw and e−iwJ½,
we may count eiw and e−iw as truly reciprocal quantities without getting into error.
Thus we can freely use the action and angle variables in complete analogy with
the classical theory without getting incorrect physical results.

The wave equation for the harmonic oscillator with Hamiltonian (18) is

i~
∂

∂t
(q|) =

1

2m

{
−~2 ∂

2

∂q2
+m2ω2q2

}
(q|).

The wave functions representing stationary states will be the periodic solutions
of this equation, for which the operator i~ ∂/∂t is the same as multiplication by
the energy-level H ′. They will thus satisfy

H ′(q|) =
1

2m

{
−~2 ∂

2

∂q2
+m2ω2q2

}
(q|). (27)

The general solution of this equation has been given by Erwin Schrödinger.* We
shall here obtain some of the solutions representing states of lowest energy for use
in the next section.

Equation (27) reduces to{
d2

dq2
− q2

a4
+

2n+ 1

a2

}
(q|) = 0, (28)

where a2 is the number ~/mω and H ′ has been put equal to (n+ 1)~ω. Put

(q|) = f(q)e−q
2/2a2.

Equation (28) now becomes

d2f

dq2
− 2

df

dq

q

a2
+ f

[
q2

a4
− 1

a2

]
+

[
−q

2

a4
+

2n+ 1

a2

]
f = 0

or d2f

dq2
− 2

q

a2
df

dq
+

2n

a2
f = 0.

The solution of this equation, when n is any non-negative integer, is a �nite power
series in q. For

n = 0, 1, 2, 3, . . .

*Schrödinger, E. (1926). Quantisierung als Eigenwertproblem. II Annalen Der Physik,
384(6), 489�527. doi:10.1002/andp.19263840602 on page 514 equation 22



125

the solutions are easily veri�ed to be

f(q) = 1, q, q2 − 1
2
a2, q3 − 3

2
qa2, . . . .

The successive eigenfunctions are thus

(q|0) = e−q
2/2a2, (q|1) = qe−q

2/2a2,

(q|2) = (q2 − 1
2
a2)e−q

2/2a2, (q|3) = (q3 − 3
2
qa2)e−q

2/2a2 . . . .

}
(29)

42. The Harmonic Oscillator in Two Dimensions

Let us now suppose the harmonic oscillator of the preceding section can vibrate also
in a second direction, at right angles to the �rst, with the same frequency ω/2π.
We shall then have a harmonic oscillator in two dimensions, whose Hamiltonian
is�

H = 1/2m · (p2x + p2y) + ½mω2(x2 + y2), (30)

where x and y are the co-ordinates and px and py the conjugate momenta.
The study of this system is of interest as it provides beautiful examples of
the superposition of states and also it can be applied to the problem of the
polarization of a photon.

The Hamiltonian (30) can be regarded as the sum of the Hamiltonians of two
separate dynamical systems, namely, the two one-dimensional harmonic oscillators
with the Hamiltonians��

Hx = 1/2m · (p2x) + ½mω2x2, Hy = 1/2m · (p2y) + ½mω2y2. (31)

On account of this fact there is a simple connexion between the eigenfunctions of
the H of (30), representing stationary states of the whole system, and those of
the Hx and Hy of (31), representing stationary states of the component systems.
Let us �rst consider the general case of a system whose Hamiltonian H can be
regarded as the sum of the Hamiltonians Hx and Hy of two separate dynamical
systems, i.e.

H = H1 +H2,

where all the observables in H1 are di�erent from and commute with all those
in H2. We can now choose a complete set of commuting observables de�ning
a representation, consisting of some observables q1 that occur only in H1 and some
q2 that occur only in H2. This will result in the representative of H being of
the form

(q′1q
′
2|H|q′′1q′′2) = (q′1|H1|q′′1)δ(q′2 − q′′2) + δ(q′1 − q′′1)(q′2|H2|q′′2), (32)

�`·' replaces `.'
�round brackets are included in analogy with (30)
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if we take the case of continuous q′ for de�niteness. Now let (q′|H ′1) and (q′2|H ′2)
be eigenfunctions of H1 and H2 respectively, belonging to the eigenvalues H ′1 and
H ′2, so that ∫

(q′1|H1|q′′1) d q′′1 (q′′1 |H ′1) = H ′1(q
′
1|H ′1),∫

(q′2|H2|q′′2) d q′′2 (q′′2 |H ′2) = H ′2(q
′
2|H ′2).

We shall then have from (32)∫∫
(q′1q

′
2|H|q′′1q′′2) d q′′1 d q′′2 (q′′1 |H ′1)(q′′2 |H ′2)

=

∫
(q′1|H1|q′′1) d q′′1 (q′′1 |H ′1)(q′2|H ′2) + (q′1|H ′1)

∫
(q′2|H2|q′′2) d q′′2 (q′′2 |H ′2)

= H ′1(q
′
1|H ′1)(q′2|H ′2) +H ′2(q

′
1|H ′1)(q′2|H ′2).

This shows that the product (q′1|H ′1)(q′2|H ′2) is an eigenfunction of H belonging
to the eigenvalue H ′1 + H ′2. The product of eigenfunctions of the Hamiltonians of

each of the component systems is an eigenfunction of the Hamiltonian of the whole

system, the corresponding eigenvalue being the sum of those for the components.
The physical meaning of this result is, of course, that when the component systems
are in stationary states, the whole system is also in a stationary state, whose energy
is the sum of those of the components and whose representative eigenfunction is
the product of those of the components.

Let us apply this general result to our problem of the two-dimensional
oscillator. We have already in the preceding section considered the eigenfunctions
of Hamiltonians of the form of Hx and Hy. Let (x|nx) and (y|ny) be
eigenfunctions of Hx and Hy, labelled by the quantum numbers nx and ny,
the corresponding energy-levels being H ′x = (nx + ½)~ω and H ′y = (ny + ½)~ω
respectively. Their product

(x|nx)(y|ny)
will then be an eigenfunction of the Hamiltonian H of (30), belonging to
the eigenvalue

H ′ = H ′x +H ′y = (nx + ny + 1)~ω.
Thus the eigenvalues of H are integral multiples of ~ω greater than zero. Each of
these eigenvalues (except the lowest one ~ω) belongs to several eigenfunctions,
corresponding to the various possible ways of choosing nx and ny to have a given
integer as sum. There are thus several stationary states with the same energy.
A system for which this is the case is called degenerate.

Let us now examine the eigenfunctions of some of the states of low energy, using
the results (29) for the eigenfunctions for the one-dimensional oscillator. The state
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of lowest energy ~ω has the quantum numbers nx = 0, ny = 0 and is represented
by the eigenfunction

(x|0)(y|0) = e−(x
2+y2)/2a2. (33)

There is only one state belonging to this energy-level, which is therefore
non-degenerate. The next lowest energy-level 2~ω has two independent states
belonging to it, corresponding to the two sets of quantum numbers nx = 1, ny = 0
and nx = 0, ny = 1. The two eigenfunctions are

(x|1)(y|0) = xe−(x
2+y2)/2a2,

(x|0)(y|1) = ye−(x
2+y2)/2a2.

}
(34)

We can take any linear combination of these two eigenfunctions and get
another eigenfunction representing another stationary state belonging to the same
energy-level 2~ω.

Our two-dimensional harmonic oscillator has circular symmetry about
the origin in the xy plane. Hence, if we take a new set of rectangular Cartesian
co-ordinates x∗ = x cos θ + y sin θ, y∗ = x sin θ − y cos θ, the wave functions in x∗

& y∗ will be of the same form as those in x & y. The stationary state of energy
2~ω for which the x∗ component of oscillation is in the one-quantum state and
the y∗ component in the zero-quantum state, i.e. for which nx

∗ = 1, ny
∗ = 0,

will therefore be represented by the eigenfunction

x∗e−(x
∗2+y∗2)/2a2.

But this is equal to (x cos θ + y sin θ)e−(x
2+y2)/2a2, (35)

which is a linear combination of the two eigenfunctions (34).
Thus the one-quantum state of linear oscillation in any direction can be obtained
by a superposition of the two one-quantum states of linear oscillation in the x and
y directions respectively.

The essential di�erences in the nature of this quantum superposition from
that of classical superposition for the same dynamical system should be noted.
In the classical theory if we superpose a state of linear oscillation of given energy
in the x-direction with one of linear oscillation of the same energy in the y-direction,
the resulting state will be of double the energy, instead of the same energy as in
the quantum theory. Again, if this resulting state is one of linear oscillation, it must
be in a direction at 45° to the original oscillations and cannot be in an arbitrary
direction as in the quantum theory.

The example of quantum superposition just discussed is directly applicable
to the problem of the polarization of a photon. A photon of given frequency
moving in a given direction may be regarded as a harmonic electromagnetic
oscillation in a one-quantum state. This oscillation may be resolved into
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two perpendicular directions, corresponding to two independent states of linear
polarization of the photon, so it forms a dynamical system formally the same as
the two-dimensional oscillator investigated above. The wave functions (34) & (35)
may thus represent states of linear polarization of the photon. We see that the
state of a photon linearly polarized in an arbitrary direction θ can be obtained by
superposition of the states of polarization 0 and ½π. The relative weights of these
two states in the superposition process are given by the squares of the moduli of
the coe�cients of the wave functions (34) in the expression (35) and are thus as
cos2 θ : sin2 θ, in agreement with the discussion in Chapter I.

We can superpose the two states of linear oscillation represented by the two
eigenfunctions (34) in such a way as to get a state of circular oscillation in either
direction about the origin, corresponding to a circularly polarized photon. To do
this we must take the following linear combinations of the eigenfunctions (34),

(x+ iy)e−(x
2+y2)/2a2, (x− iy)e−(x

2+y2)/2a2. (36)

These two new eigenfunctions will represent states of circular symmetry, as is at
once apparent from the fact that they remain invariant, except for multiplication
by a numerical factor, when one makes a transformation to the co-ordinates
x∗ & y∗. We can determine the direction of rotation for either of these
eigenfunctions from a consideration of the angular momentum. We de�ne
the angular momentum, as in the classical theory, by xpy−ypx. It is represented by
the operator −i~(x∂/∂y − y∂/∂x), which operator, when multiplied into the �rst
of the eigenfunctions (36), gives the result

− i~
(
x
∂

∂y
− y ∂

∂x

)
(x+ iy)e−(x

2+y2)/2a2

= −i~x
{
i− (x+ iy)y

a2

}
e−(x

2+y2)/2a2 + i~y
{

1− (x+ iy)x

a2

}
e−(x

2+y2)/2a2

= ~(x+ iy)e−(x
2+y2)/2a2.

This operator is thus equivalent to multiplication by ~, showing that the �rst of
the eigenfunctions (36) represents a state for which the angular momentum has
the value ~. The second must now from symmetry represent a state for which
the angular momentum has the value −~. It should be noticed that the states of
linear oscillation represented by the eigenfunctions (34) are not states for which
the angular momentum has the value zero, as it would in the classical theory,
but are states for which there is an even chance of its having the value ~ or −~.
The state of lowest energy represented by (33) is one for which the angular
momentum has the value zero.

We can deal in the same way with the two-quantum states of energy 3~ω,
of which there are three independent ones, corresponding to the three sets of
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quantum numbers nx = 2, ny = 0; nx = 1, ny = 1; nx = 0, ny = 2. The three
eigenfunctions are

(x|2)(y|0) = (x2 − ½a2)e−(x
2+y2)/2a2,

(x|1)(y|1) = xye−(x
2+y2)/2a2,

(x|0)(y|2) = (y2 − ½a2)e−(x
2+y2)/2a2.

 (37)

The two-quantum state of linear oscillation in any direction x∗ will be represented
by the eigenfunction

(x∗2 − ½a2)e−(x
∗2+y∗2)/2a2 = {(x cos θ + y sin θ)2 − ½a2}e−(x2+y2)/2a2,

which is a linear combination of the three eigenfunctions (37). There are three
two-quantum states of circular oscillation, represented by the eigenfunctions

(x+ iy)2e−(x
2+y2)/2a2, {(x+ iy)(x− iy)− a2}e−(x2+y2)/2a2,

(x− iy)2e−(x
2+y2)/2a2.

It is easily veri�ed that the angular momentum has the values 2~, 0, −2~ for these
three states respectively.

43. The Spin of the Electron

In dealing with problems about electrons according to quantum mechanics,
one �nds one does not get agreement with experiment if one assumes the electrons
to be simply point charges repelling one another according to the Coulomb law
of force. It is necessary to make the assumption that each electron is spinning and
so has an internal angular momentum, and also that it has a magnetic moment.
To make the theory agree with experiment we must assume that the eigenvalues
of the Cartesian component of the spin angular momentum in any direction are ½~
and −½~, and that the magnetic moment of the electron (with its sign reversed)
always lies in the same direction as the spin angular momentum and has as
eigenvalues for its component in any direction the values� e~/2mc and −e~/2mc.
Thus if an electron in a certain state of spin has a spin angular momentum of
½~ in a particular direction, it will have a magnetic moment −e~/2mc in this
same direction. A theoretical reason for these assumptions will be provided by
the relativity theory of the electron given in Chapter XIII. For the present we shall
merely take them as empirical results and investigate their principal consequences.

�The e here, denoting minus the charge on an electron, is, of course, to be distinguished from
the e denoting the base of exponentials.
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Let sx, sy, sz be the three Cartesian components of the spin angular momentum.
We require quantum conditions for these three observables, to replace the classical
conditions that they all commute. In �44 the quantum conditions will be obtained
for the three components of the angular momentum about a point of a single
particle and also of a set of particles. It will be found that these quantum conditions
are of the same form for a single particle as for a set of particles, which suggests
that this form, namely equations (8) of �44, is the general one governing any
angular momentum, even the angular momentum of a spinning body. This gives
us the quantum conditions

[sy, sz] = sx, [sz, sx] = sy, [sx, sy] = sz, (38)

for sx, sy, sz, which may be written alternatively

sysz − szsy = i~sx, szsx − sxsz = i~sy, sxsy − sysx = i~sz (39)

and combined in the single vector equation

s× s = i~s.

There will be further algebraic relations satis�ed by sx, sy, sz, owing to the fact
that each of these observables has only two eigenvalues ½~ and −½~. Thus its
square will have only the one eigenvalue ¼~2 and may therefore be put equal to
the number ¼~2, i.e.

s2x = s2y = s2z = ¼~3. (40)

It is convenient to write

sx = ½~σx, sy = ½~σy, sx = ½~σz,

introducing the three new observables σx, σy and σz. The magnetic moment of
the electron then has the components

− e~
2mc

σx, − e~
2mc

σy, − e~
2mc

σz,

so that these three observables σx, σy & σz are su�cient to describe completely
the spin of the electron. They form the components of a vector σ.

From (39) we �nd

σyσz − σzσy = 2iσx, σzσx − σxσz = 2iσy, σxσy − σyσx = 2iσz, (41)

and from (40)
σ2
x = σ2

y = σ2
z = 1,
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corresponding to the fact that each σ has just the two eigenvalues 1 and −1.
From the �rst of equations (41)

2i(σxσy + σyσx) = (2iσx)σy + σy(2iσx)

= (σyσz − σzσy)σy + σy(σyσz − σzσy)
= −σzσ2

y + σ2
yσz = 0,

so that σxσy = −σyσx.
Two observables like these which satisfy the commutative law of multiplication
except for a minus sign are said to anticommute. Thus σx anticommutes with σy
and from symmetry any of the three observables σx, σy, σz anticommutes with
any other. We now obtain from(41)

σyσz = iσx = −σzσy,
σzσx = iσy = −σxσz,
σxσy = iσz = −σyσx,

σxσyσz = i.

 (42)

We must verify that the relations (42) are invariant under a rotation of
axes, in order to show that our assumptions about the spin are permissible.
Let the components of σ referred to a new set of mutually perpendicular axes be

σ1 = l1σx +m1σy + n1σz,

σ2 = l2σx +m2σy + n2σz,

σ3 = l3σx +m3σy + n3σz.

From (42) we now obtain

σ2
1 = (l1σx +m1σy + n1σz)

2

= l21σ
2
x +m2

1σ
2
y + n2

1σ
2
z

+ l1m1(σxσy + σyσx) +m1n1(σyσz + σzσy) + n1l1(σzσx + σxσz)

= l21 +m2
1 + n2

1 = 1.

Again,

σ2σ3 = (l2σx +m2σy + n2σz)(l3σx +m3σy + n3σz)

= l2l3σ
2
x +m2m3σ

2
y + n2n3σ

2
z + l2m3σxσy +m2l3σyσx +m2n3σyσz

+ n2m3σzσy + n2l3σzσx + l2n3σxσz

= l2l3 +m2m3 + n2n3 + i(l2m3 −m2l3)σz + i(m2n3 − n2m3)σx + i(n2l3 − l2n3)σy

= i(l1σx +m1σy + n1σz) = iσ1

Thus σ1, σ2, σ3 satisfy relations of the same form as (42).
We shall now obtain matrices to represent the spin observables σx, σy, σz.

These matrices need have only two rows and columns, since the observables they
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represent have each only two eigenvalues. If we take a representation in which σz
is diagonal, then σz will be represented by(

1 0
0 −1

)
.

Let σx be represented by (
a1 a2
a3 a4

)
.

Since σx is a real observable this matrix must be Hermitian, so that a1 and a4 must
be real and a2 and a3 conjugate complex numbers. The equation σzσx = −σxσz
now gives us (

a1 a2
−a3 −a4

)
= −

(
a1 −a2
a3 −a4

)
,

so that a1 = a4 = 0. Hence σx is represented by a matrix of the form(
0 a2
a3 0

)
.

The equation σ2
x = 1 now shows that a2a3 = 1. Thus a2 and a3, being conjugate

complex numbers, must be of the form eiα and e−iα respectively, where α is a real
number, so that σx is represented by a matrix of the form(

0 eiα

e−iα 0

)
.

Similarly it may be shown that σy is also represented by a matrix of this form.
By suitably choosing the phases in the representation, which is not completely
determined by the condition that σz shall be diagonal, we can arrange that σx
shall be represented by the matrix (

0 1
1 0

)
.

The representative of σy is then determined by the equation σy = iσxσz. We thus
obtain �nally the three matrices(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
,

to represent σx, σy and σz respectively, which matrices satisfy all the algebraic
relations (42). The component of the spin vector σ in an arbitrary direction
speci�ed by the direction cosines l, m & n is represented by(

n l − im
l + im −n

)
. (43)
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In our representation with σz diagonal, a state of spin will be represented
by a function (σ′z|) of the variable σ′z, whose domain consists of only the two
points +1 & −1. This function is thus a pair of numbers. The state for which
σz has the value unity will be represented by the function, fα(σ′z) say, consisting of
the pair of numbers 1 & 0 and that for which it has the value −1 by the function,
fβ(σ′z) say, consisting of the pair 0 & 1. Any function of the variable σ′z, i.e. any
pair of numbers, can be expressed as a linear combination of these two. Thus any
state of spin can be obtained by superposition of the two states for which σz equals
+1 and −1 respectively. For example, the state for which the component of σ in
the direction l, m, n, represented by (43), has the value 1 is represented by the pair
of numbers a, b which satisfy

na+ (l − im)b = a,

(l + im)a− nb = b.

This gives a

b
=
l − im
1− n

=
1 + n

l + im
.

This state can be regarded as a superposition of the two states for which σz equals
+1 and −1, the relative weights in the superposition process being as

|a|2 : |b|2 = |l − im|2 : (1− n)2 = 1 + n : 1− n.

For the complete description of an electron we require the spin observables σ
together with the Cartesian co-ordinates x, y, z and momenta px, py, pz. The spin
observables are assumed to commute with these co-ordinates and momenta.
Thus a complete set of commuting observables for a system consisting of a single
electron will be x, y, z, σz. In a representation in which these are diagonal,
the representative of any state will be a function of four variables x′, y′, z′, σ′z.
Since σ′z has a domain consisting of only two points, this function of four variables
is the same as two functions of three variables, namely the two functions

(x′y′z′|)+ = (x′, y′, z′,+1|), (x′y′z′|)− = (x′, y′, z′,−1|).

Thus the presence of the spin may be considered either as introducing a new variable

into the wave function representing a state or as giving this wave function two

components.



VIII. MOTION IN A CENTRAL

FIELD OF FORCE

44. Properties of the Angular Momentum

An atom consists of a massive positively charged nucleus together with a number
of electrons moving round it, under the in�uence of the attractive force of
the nucleus and their own mutual repulsions. An exact treatment of this dynamical
system would be a very di�cult mathematical problem. One can, however,
gain some insight into the main features of the system by making the rough
approximation of regarding each electron as moving independently in a certain
central �eld of force, namely that of the nucleus, assumed �xed, together with
some kind of average of the forces due to the other electrons. Thus our present
problem of the motion of a particle in a central �eld of force forms a corner-stone
in the theory of the atom.

Let the Cartesian co-ordinates of the particle, referred to a system of axes
with the centre of force as origin, be x, y, z and the corresponding components of
momentum px, py, pz. They satisfy the quantum conditions

[x, y] = 0, [x, px] = 1, [x, py] = 0,

&c. The Hamiltonian, with neglect of relativity mechanics, will be of the form*

H = 1/2m · (p2x + p2y + p2z) + V, (1)

where V , the potential energy, is a function only of (x2 + y2 + z2).
We now introduce the components of angular momentum de�ned, as in

the classical theory, by

mx = ypz − zpy, my = zpx − xpz, mz = xpy − ypx, (2)

or by the vector equation
m = x× p.

*`·' replaces `.'

134
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From these equations we obtain at once the identity

mxx+myy +mzz = 0. (3)

We must now evaluate the P.B.'s of the angular momentum components with
the observables x, px, &c., and with each other. This we can do most conveniently
with the help of the laws (7) and (8) of �32, thus

[mz, x] = [xpy − ypx, x] = −y[px, x] = y,

[mz, y] = [xpy − ypx, y] = x[py, y] = −x,

}
(4)

[mz, z] = [xpy − ypx, z] = 0, (5)

and similarly [mz, px] = py, [mz, py] = −px, (6)

[mz, pz] = 0, (7)
with corresponding relations for mx and my. Again

[my,mz] = [zpx − xpz,mz] = z[px,mz]− [x,mz]pz

= −zpy + ypz = mx,

[mz,mx] = my, [mx,my] = mz.

}
(8)

These results are all the same as in the classical theory. The sign in the results (4),
(6), and (8) may easily be remembered from the rule that the + sign occurs when
the three observables, consisting of the two in the P.B. on the left-hand side and
the one forming the result on the right, are in the cyclic order (xyz) and the−sign
occurs otherwise.

From (4) and (5) we obtain

[mz, x
2 + y2 + z2] = x[mz, x] + [mz, x]x+ y[mz, y] + [mz, y]y

= xy + yx− yx− xy = 0. (9)

Similarly from (6) and (7) we �nd

[mz, p
2
x + p2y + p2z] = 0. (10)

Thus mz commutes with (x2 + y2 + z2) and with (p2x + p2y + p2z). It therefore
commutes with the Hamiltonian H which, according to (1), is a function of these
two observables only. Similarly mx and my commute with H. Thus the angular

momentum is a constant of the motion, as in the classical theory.
Equations (8) may be put in the vector form

m×m = i~m. (11)

If we have several particles with angular momenta m1, m2, . . . , each of them will
satisfy (11), thus

mr ×mr = i~mr.
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Further, any one of these angular momenta will commute� with any other, so that

mr ×ms + ms ×mr = 0, (r 6= s).

Hence if M =
∑

rmr is the total angular momentum,

M×M =
∑
r, s

mr ×ms =
∑
r

mr ×mr +
∑
r<s

(mr ×ms + ms ×mr)

= i~
∑
r

mr = i~M.

This result is of the same form as (11), so that the components of the total
angular momentum M of any number of particles satisfy the same commutability
relations as those of the angular momentum of a single particle. Thus (11) or (8)
may be regarded as the general commutability relations satis�ed by any angular

momentum. They certainly hold when the angular momentum is that of a number
of particles, and may be assumed to hold also for the angular momentum of
a spinning body, as was done in �43 for the spinning electron.

We introduce the observable k de�ned as the positive square root

k = (m2
x +m2

y +m2
z + ¼~2)½. (12)

Equations (8) show that our observables mx, my, mz, if measured in units which
make ~ = 1, satisfy just the same conditions as the α, β, γ of �30, the present k
corresponding to the k of �30. Thus we can apply the results of �30 directly to
our present observables. We obtain in this way that k commutes with mx, my &
mz and that its eigenvalues are integral or half odd integral multiples of ~ greater
than zero. Also for any eigenvalue k′ of k, the possible eigenvalues of mx, my or
mz are

k′ − 1
2
~, k′ − 3

2
~, k′ − 5

2
~, . . . , −k′ + 1

2
~,

and are thus half odd integral or integral according as k′ is integral or half odd
integral. However, by using the further condition that mx, my & mz are of
the form (2) we can show that their eigenvalues must be integral and thus that
those of k must be half odd integral. We have, in fact, that mz is represented
by the operator −i~(x∂/∂y − y∂/∂x), which, if one makes the transformation
x = ρ cosφ, y = ρ sinφ to the cylindrical variables ρ, φ, becomes the operator
−i∂/∂φ. The general eigenfunction of this operator is of the form f(ρ)eim

′
zφ/~,

m′z being the eigenvalue and f(ρ) being an arbitrary function of ρ. Now it is
implied throughout our theory that an eigenfunction is a single-valued function
of its variables and hence m′z must be an integral multiple of ~. Similarly it may

�[But the vector product `anticommutes' surely?]
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be shown that mx and my have only integral eigenvalues. Thus the eigenvalues of
the components of angular momentum of a particle moving in an orbit must be
integral multiples of ~, although those of the components of angular momentum in
the general case, which satisfy (8) but need not be of the form (2), may be either
integral or half odd integral. Those assumed in �43 for the components of spin
angular momentum of an electron were half odd integral.

The components of angular momentum in di�erent directions do not commute
with each other, so that one cannot in general assign numerical values to them
simultaneously. One can at most give a numerical value to the component
in one particular direction. The state of the system will then be one which,
in the language of Niels Bohr's theory, is spacially quantized in that direction.
There is, however, one special case in which one can assign numerical values to
all the components simultaneously, namely, one can give them all the value zero,
since this will not contradict the commutability relations (8). The resulting state
of zero angular momentum, with k = ½~, is then one that is spacially quantized
simultaneously in all directions.

45. Transition to Polar Co-ordinates

For further discussion of the problem of motion in a central �eld of force it is
convenient to introduce polar observables. We introduce �rst the radius r, de�ned
as the positive square root r = (x2 + y2 + z2)½.
If we evaluate its P.B.'s with px, py and pz, we obtain, with the help of formula (16)
of Chapter VI,

[r, px] =
∂r

∂x
=
x

r
, [r, py] =

y

r
, [r, pz] =

z

r
,

the same as in the classical theory. We could alternatively have evaluated these
P.B.'s by the method given in �39 for [x,H].

We now introduce the observable pr de�ned by

pr = r−1(xpx + ypy + zpz − i~). (13)

Its P.B. with r is given by�

r[r, pr] = [r, rpr] = [r, xpx + ypy + zpz]

= x[r, px] + y[r, py] + z[r, pz]

= x · x/r + y · y/r + z · z/r = r.

Hence [r, pr] = 1

or rpr − prr = i~,
�`·' replaces `.'
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so that pr is canonically conjugate r. Now the eigenvalues of r, from its de�nition
as a positive square root, must be all positive or zero, so that we have obtained
a contradiction to the result, proved at the end of �19, that an observable can have
a canonical conjugate only if its eigenvalues include all numbers from −∞ to ∞.
This inconsistency arises from the fact that the observable pr de�ned by (13) does
not strictly exist, since r has the eigenvalue zero so that r−1 does not strictly exist.
In spite of this defect the observable pr is a useful one for the study of motion
in a central �eld of force. Our equations, which will often involve pr and will
sometimes involve r−1 in other ways than through pr, will be inaccurate, but only
in so far as they apply to the one point r = 0, and this is too small a region of
space to invalidate physical conclusions obtained from them.

The observable pr de�ned by (13) is a real one, since its conjugate complex pr
is given by

prr = pxx+ pyy + pzz + i~
= xpx + ypy + zpz − 2i~
= rpr − i~ = prr,

so that pr = pr.

We can easily verify that our two new observables r and pr commute with
the angular momentum. Equation (9) shows us thatmz commutes with r2. It must
therefore commute also with r, since r is de�ned as a square-root function so that
everything that commutes with r2 commutes also with r. Again, for pr we have

r[pr,mz] = [rpr,mz] = [xpx + ypy,mz]

= −ypx − xpy + xpy + ypx = 0.

Thus r and pr commute with mz, and hence also with mx and my and with k.
We can now express the Hamiltonian in terms of our radial observables r

and pr and also k. We have, if
∑

xyz denotes a sum over cyclic permutations
of the su�xes x, y, z,

k2 − ¼~2 =
∑
xyz

m2
z =

∑
xyz

(xpy − ypx)2

=
∑
xyz

(xpyxpy + ypxypx − xpyypx − ypxxpy)

=
∑
xyz

(x2p2y + y2p2x − xpxpyy − ypypxx+ x2p2x − xpxpxx− 2i~xpx)

= (x2+y2+z2)(p2x + p2y + p2z)− (xpx + ypy + zpz)(pxx+ pyy + pzz + 2i~)

= r2(p2x + p2y + p2z)− (rpr + i~)rpr

= r2(p2x + p2y + p2z)− r2p2r.
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Hence H =
1

2m

(
p2r +

k2 − ¼~2

r2

)
+ V. (14)

This form forH is such that k commutes not only withH, as is necessary since k
is a constant of the motion, but also with every observable occurring in H, namely
both r and pr. Thus in dealing with the Hamiltonian in this form we can treat k
as a number. The permissible numbers we can take for k are its eigenvalues and
are thus positive half odd integral multiples of ~. If we write down the Schrödinger
equation for the stationary states, it will now read{

1

2m

(
−~2 ∂

2

∂r2
+
k2 − ¼~2

r2

)}
(r|) = H ′(r|), (15)

the single variable r in the wave function (r|) being su�cient when k is
counted as a number. Any value of the parameter H ′ for which this equation,
with a permissible value for k, has a solution (satisfying the boundary conditions
to be discussed later) is a possible energy-level of the system. The energy-levels
(except those for which k = ½~) are all degenerate and belong each to several
independent stationary states, corresponding to the various possible eigenvalues
of a Cartesian component of the angular momentum. The number of these states,
for any value of k, is the odd number 2k/~.

If we write down the Schrödinger equation in the original Cartesian co-ordinates
x, y, z, we shall have {

− ~2

2m
∇2 + V

}
(xyz|) = H ′(xyz|), (16)

where ∇2 is the Laplacian operator ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. This becomes,
on transforming to polar co-ordinates r, θ, φ,{

− ~2

2m

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

)
+ V

}
(rθφ|) = H ′(rθφ|).

The solutions of this equation are of the form

(rθφ|) = χ(r)Sn(θ, φ)

where Sn is a spherical harmonic of order n satisfying(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
Sn(θ, φ) = −n(n+ 1)Sn(θ, φ),

n being an integer, and χ(r) is a function of r only, satisfying{
− ~2

2m

(
∂2

∂r2
+

2

r

∂

∂r
− n(n+ 1)

r2

)
+ V

}
χ(r) = H ′χ(r). (17)
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This equation, like (15), is such that the values of H ′ for which it has a solution
are the energy-levels of the system.

The equivalence of equations (15) and (17) may be seen from the fact that
if in (15) we put (r|) = rχ(r) we obtain just equation (17) with n = k/~ − ½.
The fact that the two eigenfunctions (r|) and χ(r) are not identical but di�er by
this factor r is due to their di�erent physical interpretations. A solution (r|) of (15)
represents a state for which the probability of the particle lying in the spherical
shell between r and r + d r is proportional to |χ(r)|2 r2d r. On the other hand,
a solution (xyz|) of (16) represents a state for which the probability of the particle
lying in a small volume dxd yd z is |(xyz|)|2 dxd yd z or |χ(r)Sn(θ, φ)|2 dxd yd z,
so that the probability of its lying in the spherical shell between r and r + d r is
proportional to |χ(r)|2 r2d r. Thus the physical interpretations require (r|) to be
proportional to rχ(r).

It should be noticed that not every solution of (17), when multiplied by
the appropriate spherical harmonic, will give a solution of (16), as it may fail
to satisfy (16) at the origin. One can see most clearly how this comes about
by considering the special case for which the potential V vanishes, giving us
the problem of the free particle. If we further take H ′ = 0, equation (16) reduces to

∇2(xyz|) = 0 (18)

and equation (17) to {
∂2

∂r2
+

2

r

∂

∂r
− n(n+ 1)

r2

}
χ(r) = 0. (19)

Now a solution of (19) for n = 0 is χ(r) = 1/r, but this solution multiplied by
the appropriate spherical harmonic S0 = 1 does not satisfy (18), since, although
∇2(1/r) vanishes for any �nite value of r, its integral through any volume about
the origin is 4π, and hence

∇2(1/r) = 4πδ(x)δ(y)δ(z).

Thus the solution χ(r) = 1/r of (19) does not represent a stationary state of
the system. Again the solution χ(r) = 1/r2 of (19) for n = 1, when multiplied
by the spherical harmonic S1 = cos θ, gives a wave function (xyz|), the integral
of the square of whose modulus over any volume, however small, that contains
the origin is in�nite. This wave function must represent a state for which
the particle is certainly at the origin and this cannot be a stationary state of
zero energy for the problem of the free particle. Similarly for arbitrary n in
equation (19), of the two solutions χ(r) = rn and χ(r) = r−n−1, the second will
not give the representative of a stationary state of the system.
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It thus appears that equation (17) is not adequate to replace equation (16)
as the necessary and su�cient condition for the representative of a stationary
state. Equation (17) must be supplemented by a suitable boundary condition at
the point r = 0. Any solution χ(r) of (17) for which the integral

∫
0
r2 |χ(r)|2 d r

is not convergent must certainly be rejected, and also some for which this integral
is convergent, namely those which, when operated on by ∇2, give an in�nite result
involving the δ function at the origin. These conditions show that only those
solutions are to be allowed which, if they tend to in�nity as r → 0, do so more
slowly than 1/r. The corresponding boundary condition for the function (r|) of
equation (15) is that it shall tend to zero as r → 0.

There are also boundary conditions for the eigenfunction at r →∞.� If we are
interested only in `closed' states, i.e. states for which the particle does not go o�
to in�nity, we must restrict the integral

∫∞ |(r|)|2 d r or
∫∞

r2 |χ(r)|2 d r to be
convergent. These closed states, however, are not the only ones that are physically
permissible, as we can also have states in which the particle arrives from in�nity,
is scattered by the central �eld of force, and goes o� to in�nity again. For these
states the wave function (xyz|) may remain �nite as r → ∞. Such states will
be dealt with in Chapter X under the heading of collision problems. In any case
the eigenfunction (xyz|) must not tend to in�nity as r → ∞, or it will represent
a state that has no physical meaning.

46. Energy-levels of the Hydrogen Atom

The above analysis may be applied to the problem of the hydrogen atom with
neglect of the relativity variation of mass with velocity and the spin of the electron.
The potential energy V is now −e2/r, so that equation (15) becomes{

d2

dr2
− k2 − ¼

r2
+

2me2

~2
1

r

}
(r|) = −2mH ′

~2
(r|), (20)

when written in terms of a new observable k, equal to ~−1 times the previous k.
A thorough investigation of this equation has been given by Erwin Schrödinger.�

We shall here obtain its eigenvalues H ′ from a consideration of its eigenfunctions
expressed in the form of power series.

It is convenient to put
(r|) = f(r)e−r/a, (21)

�In the question about the physical existence of in�nity the answer has been avoided by
allowing it to be a limit to which the position would tend. `→' replaces `='

�Schrödinger, E. (1926). Quantisierung als Eigenwertproblem. Annalen Der Physik, 384(4),
361�376. doi:10.1002/andp.19263840404



142 VIII. MOTION IN A CENTRAL FIELD OF FORCE

introducing the new function f(r), where a is one or other of the square roots

a = ±
√
−~2/2mH ′. (22)

Equation (20) now becomes{
d2

dr2
− 2

a

d

dr
− k2 − ¼

r2
+

2me2

~2
· 1

r

}
f(r) = 0. (23)

We look for a solution of this equation in the form of a power series

f(r) =
∑
s

csr
s, (24)

in which consecutive values for s di�er by unity although these values themselves
need not be integers. On substituting (24) in (23) we obtain*∑

s

cs
{
s(s− 1)rs−2 − 2s/a · rs−1 − (k2 − ¼)rs−2 + 2me2/~2 · rs−1

}
= 0,

which gives, on equating to zero the coe�cient of rs−2, the following relation
between successive coe�cients cs,

cs[s(s− 1)− (k2 − ¼)] = cs−1[2(s− 1)/a− 2me2/~2]. (25)

We saw in the preceding section that only those eigenfunctions (r|) are allowed
that tend to zero with r and hence from (21) f(r) must tend to zero with r.
The series (24) must therefore terminate on the side of small s and the minimum
value of s must be greater than zero. Now the only possible minimum values of
s are those that make the coe�cient of cs in (25) vanish, i.e. k + ½ and −k + ½,
and the second of these is negative or zero. Thus the minimum value of s must
be k + ½. Since k is always half an odd integer, the values of s will all be integers.
The series (24) will in general extend to in�nity on the side of large s. For large
values of s the ratio of successive terms is

cs
cs−1

r =
2r

sa

according to (25). Thus the series (24) will always converge, as the ratios of
the higher terms to one another are the same as for the series∑

s

1

s!

(
2r

a

)s
, (26)

which converges to e2r/a.
We must now examine how our solution (r|) behaves for large values of r.

We must distinguish between the two cases of H ′ positive and H ′ negative.
For H ′ negative, a given by (22) will be real. Suppose we take the positive value

*`·' replaces `.'
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for a. Then as r →∞ the sum of the series (20) will tend to in�nity according to
the same law as the sum of the series (26), i.e. the law e2r/a. Thus from (21) (r|)
will tend to in�nity according to the law er/a and will not represent a physically
possible state. There is therefore in general no permissible solution of (20) for
negative values of H ′. An exception arises, however, whenever the series (24)
terminates on the side of large s, in which case the boundary conditions are all
satis�ed. The condition for this termination of the series is that the coe�cient of
cs−1 in (25) shall vanish for some value of the su�x s−1 not less than its minimum
value k + ½, which is the same as the condition that

s

a
− me2

~2
= 0

for some integer s not less than k+½. With the help of (22) this condition becomes

H ′ = − me4

2s2~2
, (27)

and is thus a condition for the energy-level H ′. Since s may be any positive
integer, the formula (27) gives a discrete set of negative energy-levels for
the hydrogen atom. These are in agreement with experiment. Each of them
(except the lowest one s = 1) is degenerate, as it may occur with various possible
values for k, namely, any positive half odd integer less than s. This degeneracy
is in addition to that mentioned in the preceding section arising from the various
possible values for a component of angular momentum, which degeneracy occurs
with any central �eld of force. The k degeneracy occurs only with an inverse
square law of force and even then is removed when one takes relativity mechanics
into account, as will be found in Chapter XIII. The solution of (20) when
H ′ satis�es (27) tends to zero exponentially as r →∞ and thus represents
a closed state, corresponding to an elliptic orbit in Bohr's theory.

For any positive values ofH ′, a given by (22) will be imaginary.� The series (24),
which is roughly the same as the series (26), will now have a sum that remains
�nite as r →∞. Thus (r|) given by (21) will now remain �nite as r →∞
and will therefore be a permissible solution of (20), since it will correspond to
an eigenfunction (xyz|) that tends to zero according to the law 1/r as r →∞.
Hence in addition to the discrete set of negative energy-levels (27), all positive
energy-levels are allowed. The states of positive energy are not closed, since their
representatives (r|) do not make the integral

∫∞ |(r|)|2 d r converge. These states
correspond to the hyperbolic orbits of Bohr's theory.

�`pure' omitted.
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47. Selection Rules

WhenD, the total electric displacement of a system, is represented in a Heisenberg
representation, it often happens that a great many of its matrix elements,
(α′|D|α′′) say, vanish. In fact they may all vanish except those for which the α′'s
and α′′'s are connected in a certain way. When this is the case, according
to Werner Heisenberg's interpretation of the matrix elements, a transition of
the system with emission of radiation can take place only between two stationary
states whose labels α′ and α′′ are connected in this way. There is then,
as we say, a selection rule for the α's, only certain selected transitions being
allowed. In general we must consider separately the di�erent Cartesian components
Dx, Dy, Dz of D and obtain for each of them the condition that its matrix element
(α′|D|α′′) shall not vanish. We shall then often �nd that for those transitions
α′ → α′′ which can take place, i.e. for which the vector (α′|D|α′′) does not vanish,
some of the Cartesian components (α′|Dx|α′′), (α′|Dy|α′′), (α′|Dz|α′′) do vanish.
There will then be conditions on the direction of emission and state of polarization
of the emitted radiation, which conditions, according to Heisenberg's assumption,
will be the same as the classical ones for the radiation emitted by an electric dipole
whose magnitude and direction are given by the vector

(α′|D|α′′) + (α′′|D|α′).

There is a general method for obtaining all selection rules, which is as follows.
Let D be one of the Cartesian components of D. We must obtain an algebraic
equation connecting D and the α's which does not involve any observables other
than D and the α's and which is linear in D. Such an equation will be of the form∑

r

frDgr = 0, (28)

where the fr's and gr's are functions of the α's only. When this equation is expressed
in terms of representatives, it gives us∑

r

fr(α
′)(α′|D|α′′)gr(α′′) = 0,

or (α′|D|α′′)
∑
r

fr(α
′)gr(α

′′) = 0,

which shows that (α′|D|α′′) = 0 unless∑
r

fr(α
′)gr(α

′′) = 0. (29)
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This last equation, giving the connexion which must exist between α′ and α′′

in order that (α′|D|α′′) may not vanish, constitutes the selection rule, so far as
the component D of D is concerned.

We shall now obtain the selection rules for mz and k for an electron moving
in a central �eld of force. The components of electric displacement are here
proportional to the Cartesian co-ordinates x, y, z. Taking �rst mz, we have that
mz commutes with z, or that

mzz − zmz = 0.

This is an equation of the required type (28), giving us the selection rule

m′z −m′′z = 0.

for the z-component of the displacement. Again, from equations (8) we have

[mz, [mz, x]] = [mz, y] = −x
or m2

zx− 2mzxmz + xm2
z − ~2x = 0,

which is also of the type (28) and gives us the selection rule

m′z
2
x− 2m′zm

′′
z +m′′z

2 − ~2 = 0

or (m′z −m′′z − ~)(m′z −m′′z + ~) = 0

for the x-component of the displacement. The selection rule for the y-component
is the same. Thus our selection rules for mz are that for the emission of radiation

with a polarization corresponding to an electric dipole in the z-direction, m′z cannot
change, while for that corresponding to an electric dipole in the x-direction or

y-direction, m′z must change by ±~.
We can determine more accurately the state of polarization of the radiation

emitted with a transition in which m′z changes by ±~, by considering the condition
for the non-vanishing of matrix elements of x+ iy and x− iy. We have

[mz, x+ iy] = y − ix = −i(x+ iy)

or mz(x+ iy)− (x+ iy)(mz + ~) = 0,

which is again of the type (28). It gives

m′z −m′′z − ~ = 0

as the condition that (m′z|x+ iy|m′′z) shall not vanish. Similarly

m′z −m′′z + ~ = 0
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is the condition that (m′z|x− iy|m′′z) shall not vanish. Hence

(m′z|x− iy|m′z − ~) = 0

or (m′z|x|m′z − ~) = i(m′z|y|m′z − ~) = (a+ ib)eiωt

say, a, b and ω being real, and similarly

(m′z − ~|x|m′z) = −i(m′z − ~|y|m′z) = (a− ib)e−iωt.

Thus the vector (m′z|D|m′z − ~) + (m′z − ~|D|m′z), which determines the state of
polarization of the radiation emitted with transitions for which m′′z = m′z − ~, has
the following three components

(m′z|x|m′z − ~) + (m′z − ~|x|m′z)
= (a+ ib)eiωt + (a− ib)e−iωt = 2a cosωt− 2b sinωt,

(m′z|y|m′z − ~) + (m′z − ~|y|m′z)
= −i(a+ ib)eiωt + i(a− ib)e−iωt = 2a sinωt+ 2b cosωt,

(m′z|z|m′z − ~) + (m′z − ~|z|m′z) = 0.


(30)

From the form of these components we see that radiation emitted in the z-direction
will be circularly polarized, that emitted in any direction in the xy plane will be
linearly polarized in this plane, and that emitted in intermediate directions will be
elliptically polarized. The direction of circular polarization for radiation emitted
in the z-direction will depend on whether ω is positive or negative, and this will
depend on which of the two states m′z, or m

′′
z = m′z − ~ has the greater energy.

We shall now determine the selection rule for k. We have

[k2, z] = [m2
x, z] + [m2

y, z]

= −ymx −mxy + xmy +myx

= 2(myx−mxy + i~z)

= 2(myx− ymx) = 2(xmy −mxy)

Similarly [k2, x] = 2(ymz −myz)

and [k2, y] = 2(mxz − xmz).

Hence

[k2, [k2, z]] = 2[k2,myx−mxy + i~z]

= 2my[k
2, x]− 2mx[k

2, y] + 2i~[k2, z]

= 4my(ymz −myz)− 4mx(mxz − xmz) + 2(k2z − zk2)
= 4(mxx+myy +mzz)mz − 4(m2

x +m2
y +m2

z)z + 2(k2z − zk2).

The �rst term here vanishes, from (3), leaving us with

[k2, [k2, z]] = −4(k2 − ¼~2)z = 2(k2z − zk2)
= −2(k2z + zk2) + ~2z,
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which gives k4z − 2k3zk3 + zk4 − 2~2(k2z + zk2) + ~4z = 0. (31)

Similar equations hold for x and y. These equations are of the required type (28),
and give us the selection rule

k′
4 − 2k′

2
k′′

2
k′′

4 − 2~2(k′2 + k′′
4
) + ~4 = 0

or (k′ + k′′ + ~)(k′ + k′′ − ~)(k′ − k′′ + ~)(k′ − k′′ − ~) = 0.

A transition can take place between two states k′ and k′′ only if one of these four
factors vanishes.

Now the �rst of the factors, (k′+k′′+~), can never vanish since the eigenvalues
of k are all positive. The second, (k′ + k′′ − ~), can vanish only if k′ = ½~
and k′′ = ½~. But transitions between two states with these values for k cannot
occur on account of the selection rule for mz, as may be seen from the following
argument. If two states (labelled respectively with a single prime and a double
prime) are such that k′ = ½~ and k′′ = ½~, then, according to the discussion at the
end of �44, each Cartesian component of the angular momentum must vanish for
each of them, i.e. m′x = m′y = m′z = 0 and m′′x = m′′y = m′′z = 0. The selection
rule for mz now shows that the matrix elements of x and y referring to the two
states must vanish, as the value of mz does not change during the transition,
and the similar selection rule for mx or my shows that the matrix element of z also
vanishes. Thus transitions between the two states cannot occur. Our selection
rule for k now reduces to

(k′ − k′′ + ~)(k′ − k′′ − ~) = 0,

showing that k must change by ±~. This selection rule may be written

k′
2 − 2k′k′′ + k′′

2 − ~2 = 0,

and since this is the condition that a matrix element (k′|z|k′′) shall not vanish,
we get the equation

k2z − 2kzk + zk2 − ~2z = 0

or [k, [k, z]] = −z, (32)

a result which could not easily be obtained in a more direct way.

48. The Zeeman E�ect for the Hydrogen Atom

We shall now consider the system of a hydrogen atom in a uniform magnetic �eld.
The Hamiltonian (1) with V = −e2/r, which describes the hydrogen atom in no
external �eld, gets modi�ed by the magnetic �eld, the modi�cation, according to
classical mechanics, consisting in the replacement of the components of momentum,
px, py, pz, by

� px + e/c · Ax, py + e/c · Ay, pz + e/c · Az, where Ax, Ay, Az are

�`·' replaces `.'
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the components of the vector potential describing the �eld. For a uniform �eld of
magnitude H in the direction of the z-axis we may take Ax = −½H y, Ay = ½H x,
Az = 0. The classical Hamiltonian will then be

H =
1

2m

{(
px − 1

2

e

c
H y

)2
+
(
py + 1

2

e

c
H x

)2
+ p2z

}
− e2

r
.

This classical Hamiltonian may be taken over into the quantum theory if we add
on to it a term giving the e�ect of the spin of the electron. The electron has
a magnetic moment* −e~/2mc · σ whose energy in the magnetic �eld will be*

e~H /2mc · σz. Thus the quantum Hamiltonian will be

H =
1

2m

{(
px − 1

2

e

c
H y

)2
+
(
py + 1

2

e

c
H x

)2
+ p2z

}
− e2

r
+
e~H
2mc

σz. (33)

There ought strictly to be other terms in this Hamiltonian giving the interaction
of the magnetic moment of the electron with the electric �eld of the nucleus of
the atom, but this e�ect is small, of the same order of magnitude as that of
the relativity variation of the mass of the electron with its velocity, and will be
neglected here. It will be taken into account in the relativity theory of the electron
given in Chapter XIII.

If the magnetic �eld is not too large, we can neglect terms involving H 2, so that
the Hamiltonian (33) reduces to

H =
1

2m
(p2x + p2y + p2z)−

e2

r
+
eH

2mc
(xpy − ypx) +

e~H
2mc

σz

=
1

2m
(p2x + p2y + p2z)−

e2

r
+
eH

2mc
(mz + ~σz) (34)

The extra terms due to the magnetic �eld are now* eH /2mc · (mz + ~σz).
But these extra terms commute with the total Hamiltonian and are thus constants
of the motion. This makes the problem very easy. The stationary states of
the system, i.e. the eigenstates of the Hamiltonian (34), will be those eigenstates of
the Hamiltonian for no �eld that are simultaneously eigenstates of the observables
mz and σz, or at least of the one observable mz + ~σz, and the energy-levels
of the system will be those for the system with no �eld, given by (27) if one
considers only closed states, increased by an eigenvalue of* eH /2mc · (mz + ~σz).
Thus any stationary state of the system with no �eld which is spacially quantized in
the z-direction, i.e. for whichmz has the numerical valuem′z, an integral multiple of
~, and for which also σz has the numerical value σz = ±1, will still be a stationary
state when the �eld is applied. Its energy will be increased by an amount consisting

*`·' replaces `.'
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of the sum of two parts, a part* eH /2mc · m′z arising from the orbital motion,
which may be considered as due to an orbital magnetic moment −em′z/2mc,
and a part* eH /2mc ·~σ′z arising from the spin. The ratio of the orbital magnetic
moment to the orbital angular momentum mz is −e/2mc, which is half the ratio of
the spin magnetic moment to the spin angular momentum. This fact is sometimes
referred to as the magnetic anomaly of the spin.

Since the energy-levels now involve mz, the selection rule for mz obtained
in the preceding section becomes capable of direct comparison with experiment.
According to this selection rule, mz can change by ~, 0 or −~ during
an emission process. This means that the amount of energy emitted will di�er
by −e~H /2mc, 0 or e~H /2mc respectively from the amount emitted when
there is no �eld, since σz will not change as it commutes with the electric
displacement of the system. Thus the frequency of the emitted radiation will di�er
by −eH /4πmc, 0 or eH /4πmc from that for no �eld, so that each spectral line
for no �eld gets split up into three components. If one considers the radiation
emitted in the z-direction, then from (30) the two outer components will be
circularly polarized while the central undisplaced one will be of zero intensity.
These results are in agreement with experiment and also with the classical theory
of the Zeeman e�ect. The agreement with the classical theory ceases, however,
when one takes into account relativity mechanics and the interaction of the spin
with the electric �eld of the nucleus.

49. Combination of Angular Momenta

Suppose we have two particles moving in the central �eld of force, whose angular
momenta are the vectors m and µ. The magnitudes of these vectors are
the observables k and κ, de�ned by (12) and

κ = (µ2
x + µ2

y + µ2
z + ¼~2)½

respectively. The total angular momentum will then be the vector M = m + µ,
whose magnitude is

K = (M2
x +M2

y +M2
z + ¼~2)½.

Each of the observables k and κ commutes with all the components of m, µ and
M. Thus k, κ & K will commute with each other and can be given numerical
values simultaneously. Our problem now is to determine the possible numerical
values for K when k and κ have given numerical values.

The easiest way of solving this problem is to suppose k and κ are equal to
two given numbers, as we can do since they commute with all the observables
mentioned in the problem, and then to use a matrix representation in whichmz and
µz are diagonal. We can ignore all the observables describing the dynamical system
that are not functions of the components of m and µ. Our matrix representation
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will then have only a �nite number of rows and columns, each labelled by a number
m′z having one of the values k− 1

2
~, k− 3

2
~, . . . , −k+ 1

2
~ and a number µ′z having

one of the values κ− 1
2
~, κ− 3

2
~, . . . , −κ+ 1

2
~. The possible values ofM ′

z = m′z+µ′z
will then be k + κ − ~, k + κ − 2~, k + κ − 3~, . . . , −k − κ + ~. The number of
times each of them occurs is given by the following scheme (if one assumes for
de�niteness that k > κ),

k+κ−~, k+κ−2~, k+κ−3~, . . . , k−κ, k−κ−~, . . . ,
1 2 3 . . . 2κ 2κ . . .

−k+κ, −k+κ−~, . . . , −k−κ+~.
2κ 2κ− 1 . . . 1

 (35)

If we now make a canonical transformation to a representation in which K and
Mz are diagonal, the number of rows and columns of the matrices for which Mz

has a given valueM ′
z must remain unaltered. If K ′, K ′′, . . . are the possible values

for K, there will be a set of rows and columns having the Mz-values K
′ − 1

2
~,

K ′ − 3
2
~, . . . , −K ′ + 1

2
~, together with a set having the Mz-values K

′′ − 1
2
~,

K ′′ − 3
2
~, . . . , −K ′′+ 1

2
~, &c. Comparing this distribution of Mz-values with (35),

we see that the possible values for K must be

k + κ− 1
2
~, k + κ− 3

2
~, k + κ− 5

2
~, . . . , k − κ+ 1

2
~ (36)

This result is a quite general one applying to the combination of any two
angular momenta, not necessarily the orbital angular momenta of two particles.
For example, it could be applied to the orbital angular momentum and spin of
an electron. In this case, since the spin angular momentum has the magnitude
κ = ~, it shows that when the orbital angular momentum has the magnitude k,
the combined angular momentum can have only one or other of the two magnitudes
k ± ½~.

We now have a general method for dealing with complicated atomic systems.
For an isolated system the total angular momentum M is always a constant of
the motion and its resultant K together with one of its components Mz will be
two commuting constants of the motion. We try to express M as the sum of two
angular momentam and µ whose magnitudes k and κ are constants of the motion.
If we can do this, then we try to express either of the parts, m say, itself as
a sum of two angular momenta, m1 and m2 say, whose magnitudes k1 and k2 are
constants of the motion, and so on. We obtain in this way a series of constants of
the motion Mz, K, k, κ, k1, k2, . . . which all commute with each other and may,
if there are enough of them, be taken as de�ning a Heisenberg representation.
The possible numerical values for the K, k, κ, . . . specifying a row and column are
restricted by the general rule (36). The energy will be some function of K, k, κ,
k1, k2, . . . , but independent of Mz. In general one cannot secure that k, κ, k1, k2
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are exactly constants of the motion, but one may be able to choose them so that
they are approximately so and then apply a perturbation method, as discussed in
the next chapter.

We shall now obtain the selection rule for the magnitude K of the total
angular momentum M of a general atomic system. Let m be the orbital angular
momentum of one of the electrons, whose co-ordinates are x, y, z, say, and let
M−m = µ. It is not necessary for the present discussion that the magnitudes k
and κ of the two angular momentam and µ into whichM has been split up should
be constants of the motion. We must obtain the condition that the (K ′, K ′′) matrix
element of x, y, or z shall not vanish. This is evidently the same as the condition
that the (K ′, K ′′) matrix element of λ1, λ2 or λ3 shall not vanish, where λ1, λ2,
and λ3 are any three independent linear functions of x, y and z with numerical
coe�cients, or more generally with any coe�cients that commute with K and are
thus represented by matrices which are diagonal with respect to K. Let

λ0 = Mxx+Myy +Mzz,

λx = Myz −Mzy − i~x,
λy = Mzx−Mxz − i~y,
λz = Mxy −Myx− i~z.

We have Mxλx +Myλy +Mzλz =
∑
xyz

(MxMyz −MxMzy − i~Mxx)

=
∑
xyz

(MxMy −MyMx − i~Mz)z = 0 (37)

from the general condition (11) for angular momentum. Thus λx, λy, and λz are
not linearly independent functions of x, y and z. Any two of them, however,
together with λ0 are three linearly independent functions of x, y and z and may be
taken as the above λ1, λ2 and λ3, since the coe�cients Mx, My, Mz all commute
with K. Our problem thus reduces to �nding the condition that the (K ′, K ′′)
matrix elements of λ0, λx, λy and λz shall not vanish. The physical meanings of
these λ's are that λ0 is proportional to the component of the vector (x, y, z) in
the direction of the vector M and λx, λy, λz are proportional to the Cartesian
components of the component of (x, y, z) perpendicular to M.

From (4) together with the condition that x, y and z commute with µ we obtain

[Mz, x] = [mz + µz, x] = y,

[Mz, y] = −x, [Mz, z] = 0.

}
(38)

Hence [Mz, λ0] = [Mz,Mx]x+Mx[Mz, x] + [Mz,My]y +My[Mz, y]

= Myx+Mxy −Mxy −Myx = 0.

Thus λ0 commutes with Mz, and from symmetry it must commute also with Mx

and My, so that it must commute with K. It follows that only the diagonal
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elements (K ′|λ0|K ′) of λ0 can di�er from zero, so the selection rule is that K
cannot change so far as this component of the electric displacement is concerned.

With further applications of (38) we obtain

[Mz, λx] = [Mz,My]z −Mz[Mz, y]− i~[Mz, x]

= −Mxz +Mzx− i~y = λy,

[Mz, λy] = Mz[Mz, x]− [Mz,Mx]z − i~[Mz, y]

= Mzy −Myz + i~x = −λx,
[Mz, λz] = [Mz,Mx]y +Mx[Mz, y]− [Mz,My]x−My[Mz, x]

= Myy −Mxx+Mxx−Myy = 0.

These relations between Mz and λx, λy, λz are of exactly the same form as
the relations (4) & (5) between mz and x, y, z and also (37) is of the same
form as (3). The observables λx, λy, λz thus have the same properties relative
to the angular momentum M that x, y, z have relative to m. The deduction
in �47 of the selection rule for k when the electric displacement is proportional to
(x, y, z) can therefore be taken over and applied to the selection rule for K when
the electric displacement is proportional to (λx, λy, λz). We �nd in this way that,
so far as λx, λy, λz are concerned, the selection rule for K is that it must change
by ±~.

Collecting results, we have as the selection rule for K that it must change by
0 or ±~. We have considered the electric displacment produced by only one of
the electrons, but the same selection rule must hold for each of them and thus also
for the total electric displacement.



IX. PERTURBATION THEORY

50. General Remarks

In the preceding two chapters exact treatments were given of some simple
dynamical systems in the quantum theory. Most quantum problems, however,
cannot be solved exactly with the present� resources of mathematics, as they
lead to equations whose solutions cannot be expressed in �nite terms with
the help of the ordinary functions of analysis. For such problems one must
use a perturbation method. This consists in splitting up the Hamiltonian into
two parts, one of which must be simple and the other small. The �rst part may then
be considered as the Hamiltonian of a simpli�ed or unperturbed system, which can
be dealt with exactly, and the addition of the second will then require small
corrections, of the nature of a perturbation, in the solution for the unperturbed
system. If this second part contains a small numerical factor ε, we can obtain
the solution of our equations for the perturbed system in the form of a power series
in ε, which, provided it converges, will give the answer to our problem with any
desired accuracy. Even when the series does not converge, the �rst approximation
obtained by means of it is usually fairly accurate.

There are two distinct methods in perturbation theory. In one of these
the perturbation is considered as causing a modi�cation of the states of
the unperturbed system. In the other we do not consider any modi�cation
to be made in the states of the unperturbed system, but we suppose that
the perturbed system, instead of remaining in one of these states, is continually
changing from one to another, or making transitions, under the in�uence of
the perturbation. Which method is to be used in any particular case depends
on the nature of the problem to be solved. The �rst method is useful usually
only when both the Hamiltonian for the undisturbed system and the perturbing
energy (the correction in this Hamiltonian) do not involve the time explicitly,
and is then applied to the stationary states. It can then be used for calculating
things that do not refer to any de�nite time, such as the energy-levels of

�The early Twentieth Century
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the stationary states of the perturbed system, or, in the case of collision problems,
the probability of scattering through a given angle. The second method must, on
the other hand, be used for solving all problems involving a consideration of time,
such as those about the transient phenomena that occur when the perturbation
is suddenly applied, or more generally problems in which the perturbation varies
with the time in any way (i.e. in which the perturbing energy involves the time
explicitly in an arbitrary way). Again, this second method must be used in
collision problems, even though the perturbing energy does not here involve the
time explicitly, if one wishes to calculate absorption and emission probabilities,
since these probabilities, unlike a scattering probability, cannot be de�ned without
reference to a state of a�airs that varies with the time.

51. The Change in the Energy-levels caused by

a Perturbation

The �rst of the above-mentioned methods will now be applied to the calculation
of the changes in the energy-levels of a system caused by a perturbation.
The perturbing energy, like the Hamiltonian for the unperturbed system, must now
not involve the time explicitly. Our problem has a meaning, of course,
only provided the energy-levels of the unperturbed system are discrete and
the di�erences between them are large compared with the changes in them
caused by the perturbation. This fact results in the treatment of perturbation
problems by the �rst method having some di�erent features according to whether
the energy-levels of the unperturbed system are discrete or continuous.

Let the Hamiltonian of the perturbed system be

H = H0 + V, (1)

H0 being the Hamiltonian of the unperturbed system and V the small perturbing
energy. By hypothesis each eigenvalue H ′ of H lies very close to one and only
one eigenvalue H ′′0 of H0. It is convenient to use the same number of primes
to specify any eigenvalue of H and the eigenvalue of H0 to which it lies very close.
Thus we shall have H ′′ di�ering from H ′′0 by a small quantity of order V and
di�ering from H ′0 by a quantity that is not small unless H ′0 = H ′′0 . We must now
take care always to use di�erent numbers of primes to specify eigenvalues of H
and H0 which we do not want to lie very close together.

Let ψ(H ′) be an eigen-ψ of H belonging to the eigenvalue H ′, so that

Hψ(H ′) = H ′ψ(H ′). (2)

This means that ψ(H ′) denotes a stationary state of the perturbed system of
energy H ′. Again, let ψ(H ′′0 ) be an eigen-ψ of H ′′0 (at some particular time t)
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belonging to the eigenvalue H ′′0 , so that

H0ψ(H ′′0 ) = H ′′0ψ(H ′′0 ). (3)

This ψ(H ′′0 ) will denote a non-stationary state of the perturbed system, and indeed
a di�erent non-stationary state for each di�erent value of the above t, but for
the unperturbed system it will denote a stationary state of energy H ′′0 .

Now suppose that for the unperturbed system there is only one stationary
state for each energy-level H ′′0 , i.e. the unperturbed system is non-degenerate.
This requires that H0 shall have only one independent eigen-ψ belonging to
any eigenvalue H ′′0 (which is a condition governing only the form of the
observable H0 and independent of whether we are considering the perturbed
or the unperturbed system). From our assumption that the changes
in the energy-levels caused by the perturbation are small compared with
the di�erences of the energy-levels of the unperturbed system, there must be only
one independent eigen-ψ ofH belonging to any eigenvalueH ′, so that the perturbed
system is also non-degenerate. The fact that the perturbing energy V is small,
or thatH0 (at time t) andH are two nearly equal observables, will require, not only
that their eigenvalues are nearly equal, but also that corresponding eigen-ψ's are
nearly equal, apart from numerical factors. Thus we shall have

ψ(H ′) = cψ(H ′0) + ψ1, (4)

where c is a number and ψ1 is a small ψ-symbol. We may assume ψ1 to be
orthogonal to ψ(H ′0), since if it were not so it could be expressed as the sum of
two parts, one of which is orthogonal to ψ(H ′0) while the other is a numerical
multiple of ψ(H ′0) which can be absorbed in the �rst term of the right-hand side
of (4). We can now take c = 1, so that we have

ψ(H ′) = ψ(H ′0) + ψ1, (5)

where ψ1 is small and orthogonal to ψ(H ′0).
From (1), (2) and (5) we now obtain

{H0 + V }{ψ(H ′0) + ψ1} = Hψ(H ′) = H ′ψ(H ′)−H ′{ψ(H ′0) + ψ1}.

With the help of (3), this gives

H ′0ψ(H ′0) +H0ψ1 + V ψ(H ′0) + V ψ1 = H ′ψ(H ′0) +H ′ψ1.

If we neglect the second-order term V ψ1, this reduces to

{H ′ −H ′0}ψ(H ′0) + {H ′ −H0}ψ1 = V ψ(H ′0). (6)
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If we now multiply this equation throughout by φ(H ′0), the conjugate imaginary
symbol to (4), on the left, the second term will contribute nothing, since

φ(H ′0){H ′ −H0}ψ1 = φ(H ′0){H ′ −H ′0}ψ1 = {H ′ −H ′0}φ(H ′0)ψ1 = 0,

on account of φ(H ′0) and ψ1 being orthogonal. We shall thus be left with

H ′ −H ′0 = φ(H ′0)V ψ(H ′0), (7)

assuming φ(H ′0) and ψ(H ′0) to be normalized.
This result gives us the �rst-order change in the energy-level of any state caused

by the perturbation. It shows that the �rst-order change in the energy-level is equal

to the average value of the perturbing energy for the unperturbed stationary state.
When formulated in this way, this result in quantum perturbation theory is
the same as in the classical theory and as in the old quantum mechanics of
Niels Bohr's theory. One can say alternatively that the �rst-order change in
an energy-level is equal to the corresponding diagonal element of the matrix
representing the perturbing energy in a representation in which the Hamiltonian
for the unperturbed system is diagonal i.e. in a Heisenberg representation for
the unperturbed system.

We must now consider the case when the unperturbed system is degenerate,
so that there are several eigen-ψ's of H0 belonging to the same eigenvalue H ′0.
The perturbation may now, perhaps, be such that the perturbed system is
non-degenerate, or that it is not so much degenerate as the unperturbed system.
This means that each energy-level H ′0 of the unperturbed system gets split up
by the perturbation into several energy-levels H ′ all lying close to H ′0.

* We shall
now have that every eigen-ψ of H is approximately equal to an eigen-ψ of H0,
but the converse, that every eigen-ψ of H0 is approximately equal to an eigen-ψ
of H, will not be true, as may be seen from the following argument. If ψa and ψb
are two eigen-ψ's of H0 belonging to the same eigenvalue and are approximately
equal respectively to two eigen-ψ's of H belonging to two di�erent eigenvalues,
then any linear combination of them, aψa + bψb, will also be an eigen-ψ of H0

but will not be approximately equal to any eigen-ψ of H. The problem of �nding
which eigen-ψ's of H0 are approximately equal to eigen-ψ's of H is the analogue
of the problem of secular perturbations in classical mechanics.

Any eigen-ψ of H0 belonging to the eigenvalue H ′0 is expressible as a linear
combination of a complete set of such eigen-ψ's. We shall choose such a set

*To distinguish these energy-levels one from another we should require some more elaborate
notation, since according to the present notation they must all be speci�ed by the same number
of primes, namely, by the number of primes specifying the energy-level of the unperturbed
system from which they arise. For our present purposes, however, this more elaborate notation
is not required.
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consisting of the simultaneous eigen-ψ's, ψ(H ′0ξ
′), of H0 and a number of

observables ξ that commute with H0 and with each other and that together with
H0 form a complete commuting set of observables. Any eigen-ψ ψ(H ′0) is now
expressible in the form

ψ(H ′0) =
∑
ξ′

ψ(H ′0ξ
′) (ξ′|),

where the coe�cients (ξ′|) are numbers forming a representative of ψ(H ′0).
Any eigen-ψ ψ(H ′) of H, belonging to some eigenvalue H ′ that lies close to H ′0,
is approximately equal to some ψ(H ′0) and is therefore of the form

ψ(H ′) =
∑
ξ′

ψ(H ′0ξ
′) (ξ′|) + ψ1, (8)

where ψ1 is small. As in the non-degenerate case, we may assume that ψ1 is
orthogonal to each ψ(H ′0ξ

′), since if it is not it can be expressed as the sum of
two parts, one of which is orthogonal to the ψ(H ′0ξ

′)'s while the other is a linear
combination of them. We now obtain with the help of (1), (2) and (3)

{H0 + V }

{∑
ξ′

ψ(H ′0ξ
′) (ξ′|) + ψ1

}
= Hψ(H ′) = H ′ψ(H ′)

= H ′

{∑
ξ′

ψ(H ′0ξ
′) (ξ′|) + ψ1

}
or {H ′ −H ′0}

∑
ξ′

ψ(H ′0ξ
′) (ξ′|) + {H ′ −H0}ψ1 = V

∑
ξ′

ψ(H ′0ξ
′) (ξ′|),

with neglect of the second-order term V ψ1. If we multiply this equation throughout
by φ(H ′0ξ

′′) on the left, we shall again have the term φ(H ′0ξ
′′){H ′−H0}ψ1 vanishing

and shall be left with

{H ′ −H ′0} (ξ′′|) =
∑
ξ′

φ(H ′0ξ
′′)V ψ(H ′0ξ

′)(ξ′|),

provided the ψ(H ′0ξ
′) are normalized. This result is the same as

{H ′ −H ′0} (ξ′|) =
∑
ξ′′

(H ′0ξ
′|V |H ′0ξ′′) (ξ′′|), (9)

where (H ′0ξ
′|V |H ′0ξ′′) is an element of the matrix representing V in

the (H0, ξ)-representation.
Equation (9) is of the form of the standard equation of the theory of

eigenvalues. It shows that H ′ −H ′0 is an eigenvalue of the matrix (H ′0ξ
′|V |H ′0ξ′′).
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This matrix is a part of the representative of the perturbing energy V in
a Heisenberg representation for the unperturbed system, namely the part
consisting of those elements that refer to the same unperturbed energy level
H ′0 for their row and column. Each change of the energy-level H ′0 caused by
the perturbation is an eigenvalue of this matrix and further the eigenfunctions,
namely the quantities (ξ′|), are just the coe�cients required in (8) to give us those
linear functions of the eigen-ψ's of H0 belonging to the eigenvalue H ′0 that are
approximately eigen-ψ's of H and approximately represent stationary states of
the perturbed system. We have thus obtained to the �rst order the energy-levels
and stationary states of the perturbed system. It should be noticed that these
�rst-order results are independent of the values of all those matrix elements of
the perturbing energy which refer to two di�erent energy-levels H ′0 and H ′′0 of
the unperturbed system.

One can use this perturbation method for the calculation of the higher
approximations if required. General recurrence formulas giving the n-th order
corrections in terms of those of lower order have been obtained by Born,
Heisenberg, and Jordan.*

52. The Perturbation considered as causing

Transitions

We shall now consider the second of the two perturbation methods mentioned
in �50. We suppose again that we have an unperturbed system governed by
a Hamiltonian H0 which does not involve the time explicitly, and a perturbing
energy V which can now be an arbitrary function of the time. The Hamiltonian
for the perturbed system is again H = H0 +V. For the present method it does not
make any essential di�erence whether the energy-levels of the unperturbed system,
i.e. the eigenvalues of H0, form a discrete or continuous set. We shall, however,
take the discrete case, for de�niteness.

We introduce an α-representation in which a complete set of commuting
observables α are diagonal, each of which is the value at time t of some dynamical
variable that is a constant of the motion for the unperturbed system. This means
that H0 at time t commutes with each of the α's and is thus represented by
a diagonal matrix

(α′|H0|α′′) = H ′0δα′α′′ . (10)

*Born, M., Heisenberg, W., & Jordan, P. (1926). �Zur Quantenmechanik. II.�Zeitschrift Für
Physik, 35(8-9), 557�615. doi:10.1007/bf01379806 .
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If the phases of the representation are such that the Schrödinger equation holds,
we have, using stars to distinguish the representatives in this case,

i~
∂

∂t
(α′|)∗ =

∑
α′′

(α′|H0 + V |α′′)∗ (α′′|)∗

= H ′0(α
′|)∗ +

∑
α′′

(α′|V |α′′)∗ (α′′|)∗. (11)

For our present purpose, however, it is more convenient to choose these phases
to be those of the Heisenberg representation for the undisturbed system, so that
our representative (α′|) of a state is connected with the Schrödinger one (α′|)∗ by
the relation

(α′|)∗ = e−iH
′
0t/~(α′|), (12)

which was obtained at the end of �38. The two representatives of an observable
will be connected in the same way by

(α′|ξ|α′′)∗ = e−i(H
′
0−H′′0 )t/~ (α′|ξ|α′′).

The representative (10) of H0 is, of course, the same in either case, since it
is diagonal.

Our new representative (α′|) does not satisfy the Schrödinger equation,
of course, but satis�es instead the following equation, obtained by substituting (12)
in (11),�

i~
[
−iH ′0/~ · e−iH

′
0t/~(α′|) + e−iH

′
0t/~

∂

∂t
(α′|)

]
= H ′0e

−iH′0t/~(α′|) +
∑
α′′

(α′|V |α′′)∗e−iH′′0 t/~(α′′|),

which reduces to

i~
∂

∂t
(α′|) =

∑
α′′

ei(H
′
0−H′′0 )t/~(α′|V |α′′)∗(α′′|)

=
∑
α′′

(α′|V |α′′) (α′′|). (13)

The Schrödinger representative (α′|V |α′′)∗ of the perturbing energy V does not
depend on t, except in so far as V itself involves t explicitly, while the representative
(α′|V |α′′) appearing in our equation (13) varies rapidly with t, according to
the Heisenberg law ei(H

′
0−H′′0 )t/~ when one neglects the explicit dependence of V

on t.

�`·' replaces `.'
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Equation (13) is the fundamental equation of the present method in
perturbation theory. It is an exact equation, no use having yet been made of
the fact that the perturbation is small. It shows how the representative of a state
of a perturbed system varies with the time when the representation is chosen so
that the whole of this variation is caused by the perturbation, and thus expresses
most clearly the way in which the perturbation may be considered as causing
a continual change in the state of the system. At any instant the probability of
the α's having speci�ed values α′ is

P ′ = |(α′|)|2 (14)

provided P ′ is normalized.
We shall now obtain an approximate solution to equation (13) for a given

initial value of the representative (α′|) of the state. Since V is small, the rate of
change of (α′|) is small and (α′|) remains approximately equal to its initial value,
at any rate for times that do not di�er too much from the initial time. We can thus
obtain a �rst approximation by substituting for (α′′|) in the right-hand side of (13)
its initial value and then performing a simple integration. We may then obtain
a second approximation by substituting the �rst approximation in the right-hand
side of (13), and so on inde�nitely.

Let the initial value of (α′|), i.e. the value at time t = 0, be a0(α
′), or a′0 say,

for brevity. We shall then have in the �rst approximation for the value of (α′|) at
an arbitrary time τ ,*

(α′|)τ = a′0 − i/~ ·
∑
α′′

∫ τ

0

(α′|V |α′′)ta′′0 d t

= a′0 + a′′1τ

say, a′1 being the �rst-order correction, whose value at time τ is�

a′1τ = −i/~ ·
∑
α′′

a′′0

∫ τ

0

(α′|V |α′′)t d t. (15)

The second approximation at an arbitrary time T will now be*

(α′|)T = a′0 − i/~ ·
∑
α′′

∫ T

0

(α′|V |α′′)T [a′′0 + a′′1τ ] d τ

= a′0 + a′1T + a′2T ,

*`·' replaces `.'
�`·' inserted!
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where a′2, the second-order correction, has the value
* at time T

a′1T = −i/~ ·
∑
α′′

∫ T

0

(α′|V |α′′)τ a′′1τ d τ

= −1/~2 ·
∑
α′′, α′′′

a′′′0

∫ T

0

(α′|V |α′′)τ d τ
∫ τ

0

(α′′|V |α′′′)t d t. (16)

The probability (14) of the α's having the values α′ at any time is now,
to the second order of accuracy,

P ′ = (a′0 + a′1 + a′2)(a
′
0 + a′1 + a′2)

= a′0a
′
0 + (a′1a

′
0 + a′0a

′
1) + (a′2a

′
0 + a′1a

′
1 + a′0a

′
2) + · · · (17)

= P ′0 + P ′1 + P ′2 + · · ·,
P ′0 being the initial value of this probability and P ′1 and P ′2 being the �rst and
second order corrections.

Suppose now that we are given, not the initial value a′0 of (α′|), but only
the initial probability P ′0 of the α's having any speci�ed values α′, and want
to calculate the probability at any subsequent time of the α's having
speci�ed values. We now know only the modulus of (α′|) and not its phase,
so that we must average over all phases. This averaging results in a considerable
simpli�cation in the expression (17) for P ′, since this expression is bilinear in a0
and a0 [both a1 and a2 being linear functions of a0 according to (15) and (16)],
and thus consists of a sum of terms of the form a′′0a

′′′
0 . The average of a′′0a

′′′
0 or

a0(α
′′)a0(α

′′′) will vanish except when α′′′ = α′′, so that the only surviving terms
will be those of the form a′′0a

′′
0. In this way P ′1 reduces to

*

P ′1τ = a′1τa
′
0 + a′0a

′
1τ

=

[
−i/~ · a′0

∫ τ

0

(α′|V |α′)t d t
]
a′0 + a′0

[
i/~ · a′0

∫ τ

0

(α′|V |α′)t d t
]

= 0.

Similarly P ′2 reduces to
*

P ′2T = a′2Ta
′
0 + a′1Ta

′
1T + a′0a

′
2T

= −1/~2 · a′0a′0
∑
α′′

∫ T

0

(α′|V |α′′)τ d τ
∫ τ

0

(α′′|V |α′)t d t

+ 1/~2 ·
∑
α′′

a′′0a
′′
0

∣∣∣∣∫ T

0

(α′|V |α′′)t d t
∣∣∣∣2

− 1/~2 · a′0a′0
∑
α′′

∫ T

0

(α′′|V |α′)τ d τ
∫ τ

0

(α′|V |α′′)t d t,



162 IX. PERTURBATION THEORY

use being made, in dealing with the third term, of the fact that the matrix (α′|V |α′′)
is Hermitian. If we interchange t and τ in this third term, we can combine it with
the �rst term to give�

− |a′0|
2
/~2 ·

∑
α′′

[∫ T

0

d τ

∫ τ

0

d t +

∫ T

0

d t

∫ t

0

d τ

]
(α′|V |α′′)τ (α′′|V |α′)t

= − |a′0|
2
/~2 ·

∑
α′′

∫ T

0

d τ

∫ T

0

d t (α′|V |α′′)τ (α′′|V |α′)t

= − |a′0|
2
/~2 ·

∑
α′′

∣∣∣∣∫ τ

0

(α′|V |α′′)t d t
∣∣∣∣2.

Thus our expression for P ′2 becomes�

P ′2T = 1/~2 ·
∑
α′′

{|a′′0|
2 − |a′0|

2}
∣∣∣∣∫ T

0

(α′|V |α′′)t d t
∣∣∣∣2

= 1/~2 ·
∑
α′′

{P ′′0 − P ′0}
∣∣∣∣∫ T

0

(α′|V |α′′)t d t
∣∣∣∣2,

and the probability P ′ of the α's having the values α′ is, to the second order
of accuracy,�

P ′T = P ′0 + 1/~2 ·
∑
α′′

{P ′′0 − P ′0}
∣∣∣∣∫ T

0

(α′|V |α′′)t d t
∣∣∣∣2. (18)

This result is capable of a simple interpretation. If we suppose that initially
the α's certainly have the values α′′, so that P ′′0 = 1, P ′0 = 0 for α′ 6= α′′,
(in which special case the averaging over the phases of the a0's is not necessary),
then the right-hand side of (18) reduces to the single term�

1/~2 ·
∣∣∣∣∫ T

0

(α′|V |α′′)t d t
∣∣∣∣2 = P (α′′, α′) (19)

say. This may be interpreted as the probability of the system making a transition
from the state α′′ to the state α′ under the in�uence of the perturbation V during
the interval of time 0 to T . It is symmetrical between α′ and α′′. Returning
now to the general case, we see that (18) may be regarded as expressing that
the change in the probability of the α's having the values α′ during the time interval
0 to T , namely P ′T − P ′0, is made up of the total probability

∑
α′′ P

′′
0 P (α′′, α′) of

the system jumping into the state α′ from some other state α′′, minus the total

�`·' replaces `.'
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probability P ′0
∑

α′′ P (α′, α′′) of its jumping out of the state α′, during this time
interval. Thus the ordinary laws of probability apply, showing that there is no
interference between the di�erent transition processes. If we had not averaged
over the initial phases, then there would have been such interference.

The integrand in (19) is the representative in a certain representation of
the perturbing energy at time t. This representation is one that does not
depend very much on t, since if we put V = 0 it would become the Heisenberg
representation and would not depend on t at all. Hence we can, without spoiling

the order of accuracy of our result, replace the integral in (19) by
(
α′
∣∣∣∫ T0 Vt d t

∣∣∣α′′)
and obtain an alternative expression for the transition probability�

P (α′′, α′) = 1/~2 ·
∣∣∣∣(α′ ∣∣∣∣∫ T

0

Vt d t

∣∣∣∣α′′)∣∣∣∣2. (20)

This provides a simple physical meaning for the non-diagonal elements of
the matrix representing an observable when this observable can be regarded as
the time integral of a perturbing energy.

53. Application to Radiation

In the preceding section a general theory of the perturbation of an atomic system
was developed, in which the perturbing energy could vary with the time in
an arbitrary way. A perturbation of this kind can be realized in practice by
allowing incident electromagnetic radiation to fall on the system. Let us see what
our result (19) or (20) reduces to in this case.

If we neglect the e�ects of the magnetic �eld of the incident radiation,
and if we further assume that the wave-lengths of the harmonic components of
this radiation are all large compared with the dimensions of the atomic system,
then the perturbing energy is simply the scalar product

V = (D, EEE ), (21)

where D is the total electric displacement of the system and EEE is the electric
force of the incident radiation. We suppose EEE to be a given function of the time.
If we take for simplicity the case when the incident radiation is plane polarized with
its electric vector in a certain direction and let D denote the Cartesian component
of D in this direction, the equation (21) for V reduces to the ordinary product

V = DE,

where E is the magnitude of the vector EEE. The matrix elements of V are

(α′|V |α′′) = (α′|D|α′′)E,
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since E is a number. Now (α′|D|α′′) varies with the time t according to
the Heisenberg law

(α′|D|α′′) = (α′|D|α′′)0e
i(H′0−H′′0 )t/~,

(α′|D|α′′)0 being constant, and hence our expression (19) for the transition
probability becomes*

P (α′, α′′) = 1/~2 · |(α′|D|α′′)|2
∣∣∣∣∫ T

0

Ete
i(H′0−H′′0 )t/~ d t

∣∣∣∣2. (22)

If the incident radiation during the time interval 0 to T is resolved into its
Fourier components, the energy crossing unit area per unit frequency range about
the frequency ν will be, according to classical electrodynamics,*

Eν = c/2π ·
∣∣∣∣∫ T

0

Ete
2πiνt d t

∣∣∣∣2. (23)

Comparing this with (22), we see that the transition probability between two
states α′ and α′′ with energies H ′0 and H ′′0 depends on that Fourier component
of the incident radiation whose frequency is ν = |H ′0 −H ′′0 | /h, in agreement with
Bohr's theory. The magnitude of this transition probability is connected with
the intensity of the Fourier component through the relation*

P (α′, α′′) = 2π/c~2 · |(α′|D|α′′)|2Eν . (24)

This relation gives the probability of the system, if initially in the state of lower
energy, of absorbing radiation and being carried to the upper state, and if initially
in the upper state, of being stimulated by the incident radiation to emit and fall to
the lower state. The present theory does not account for the fact that the system,
if in the upper state with no incident radiation, can emit spontancously and fall
to the lower state.

The existence of the phenomenon of stimulated emission was inferred
by Albert Einstein,� long before the discovery of quantum mechanics, from
a consideration of thermodynamic equilibrium between atoms and a �eld of
black-body radiation satisfying Planck's law. Einstein showed that the transition
probability for stimulated emission must equal that for absorption between
the same pair of states and deduced a relation connecting this transition

*`·' replaces `.'
�Einstein, Albert "Zur Quantentheorie der Strahlung", Physikalische Zeitschrift 18,

pp 121-128, https://ui.adsabs.harvard.edu/abs/1917PhyZ...18..121E English translation:
https://s3.cern.ch/inspire-prod-�les-9/9e9ac9d1e25878322fe8876fdc8aa08d
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probability with that for spontaneous emission. Werner Heisenberg's assumption
for the spontaneous emission probability, given in �38, together with Einstein's
theory, will therefore provide us with values for the transition probabilities for
absorption and stimulated emission. These values are in agreement with (24).
Thus the theory of the present section gives a partial justi�cation for Heisenberg's
assumption. The complete justi�cation will be provided by the general theory of
Chapter XII, in which the electromagnetic �eld will be treated as a dynamical
system interacting with the atom according to the laws of quantum mechanics.
This general theory will not only con�rm the result (24) for absorption and
stimulated emission, but will also give the required value for the spontaneous
emission probability.

54. Transitions caused by a Perturbation

Independent of the Time

The perturbation method of �52 is still valid when the perturbing energy V does
not involve the time t explicitly. Since the total Hamiltonian H in this case
does not involve t explicitly, we could now, if desired, deal with the system by
the perturbation method of �51 and �nd its stationary states. Whether this method
would be convenient or not would depend on what we want to �nd out about
the system. If what we have to calculate makes an explicit reference to the time,
e.g. if we have to calculate the wave function at one time when we are given
its value at another time, the method of �52 would be the more convenient one.

Let us see what the result (19) for the transition probability becomes when
V does not involve t explicitly. The matrix element (α′|V |α′′) now varies with t
according to the Heisenberg law and thus its time integral is∫ T

0

(α′|V |α′′)t d t = (α′|V |α′′)0

∫ T

0

ei(H
′
0−H′′0 )t/~ d t

= (α′|V |α′′)0

ei(H
′
0−H′′0 )T/~ − 1

i(H ′0 −H ′′0 )/~
,

provided H ′0 6= H ′′0 . Thus the transition probability (19) becomes

P (α′, α′′) = |(α′|V |α′′)|2 [ei(H
′
0−H′′0 )T/~ − 1][e−i(H

′
0−H′′0 )T/~ − 1]/(H ′0 −H ′′0 )2

= 2 |(α′|V |α′′)|2 [1− cos{(H ′0 −H ′′0 )T/~}]/(H ′0 −H ′′0 )2 (25)

If H ′′0 di�ers appreciably from H ′ this transition probability is small and
remains so for all values of T . This result is required by the law of
the conservation of energy. The total energy H is constant and hence
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the proper-energy H0 (i.e. the energy with neglect of the part V due to
the perturbation), being approximately equal to H, must be approximately
constant. This means that if H0 initially has the numerical value H ′0, at any
later time there must be only a small probability of its having a numerical value
di�ering considerably from H ′0.

On the other hand, when the initial state α′ is such that there exists another
state α′′ having the same or very nearly the same proper-energyH0, the probability
of a transition to the �nal state α′′ may be quite large. The case of physical
interest now is that in which there is a continuous range of �nal states α′′ having
a continuous range of proper-energy levels H ′′0 passing through the value H ′0
of the proper-energy of the initial state. The initial state must not be one of
the continuous range of �nal states, but may be either a separate discrete state or
one of another continuous range of states. We shall now have, remembering the
rules of �28 for the interpretation of probability amplitudes with continuous ranges
of states, that, with P (α′, α′′) having the value (25), the probability of a transition
to a �nal state within the small range α′′ to α′′ + dα′′ will be P (α′, α′′)dα′′ when
the initial state α′ is discrete and will be proportional to this quantity when α′ is
one of a continuous range.

We may suppose that the α's describing the �nal state, which are any complete
set of commuting dynamical variables that all commute with H0, consist of H0

itself together with a number of other dynamical variables β. (The β's need have
no meaning for the initial state α′.) We shall suppose for de�niteness that the
β's have only discrete eigenvalues. The total probability of a transition to a �nal
state α′′ for which the β's have the values β′′ and H0 has any value, (there will be
a strong probability of its having a value near the initial value H ′0,) will now be
(or be proportional to)*∫

P (α′, α′′) dH ′′0

=

∫ ∞
−∞
|(α′|V |H ′′0β′′)|

2
[1− cos{(H ′0 −H ′′0 )T/~}]/(H ′0 −H ′′0 )2 · dH ′′0 (26)

= 2T/~ ·
∫ ∞
−∞
|(α′|V |H ′0 + ~x/T, β′′)|2 [1− cosx]/x2 · dx

if one makes the substitution (H ′′0 −H ′0)T/~. For large values of T this reduces to*

2T/~ · |(α′|V |H ′0β′′)|
2

∫ ∞
−∞

[1− cosx]/x2 · dx

= 2πT/~ · |(α′|V |H ′0 β′′)|
2
. (27)

*`·' replaces `.'



167

Thus the total probability up to time T of a transition to a �nal state for which
the β's have the values β′′ is proportional to T . There is therefore a de�nite
probability coe�cient, or probability per unit time, for the transition process under
consideration, having the value*

2π/~ · |(α′|V |H ′0 β′′)|
2
. (28)

It is proportional to the square of the modulus of the matrix element, associated
with this transition, of the perturbing energy.

In order that the approximations used in deriving (27) may be valid, the time T
must be not too small and not too large. It must be large compared with the
periods of the atomic system in order that the evaluation of the integral (26)
leading to the result (27) may be correct, while it must not be excessively
large or else the general formula (19) will break down. In fact one could make
the probability (27) greater than unity by taking T large enough. The upper limit
to T is �xed by the condition that the probability (19) or (27) must be small
compared with unity. There is no di�culty in T satisfying both these conditions
simultaneously provided the perturbing energy V is su�ciently small.

55. The Anomalous Zeeman E�ect

One of the simplest examples of the perturbation method of �51 is the calculation
of the change in the energy-levels of a general atom caused by a uniform
magnetic �eld. The problem of a hydrogen atom in a uniform magnetic �eld
has already been dealt with in �48 and was so simple that perturbation theory
was unnecessary. The case of a general atom is not much more complicated when
we make a few approximations such that we can set up a simple model for the atom.

We �rst of all consider the atom in the absence of the magnetic �eld along
the lines indicated in �49 and look for angular momenta that are constants of
the motion. The total angular momentum of the atom, the vector j say, is certainly
a constant of the motion. This angular momentum may be regarded as the sum
of two parts, the total orbital angular momentum of all the electrons, l say,
and the total spin angular momentum, s say. Thus we have j = l+s. Now the e�ect
of the spin magnetic moments on the motion of the electrons is small compared
with the e�ect of the Coulomb forces and may be neglected as a �rst approximation.
With this approximation the spin angular momentum of each electron is a constant
of the motion, there being no forces tending to change its orientation. Thus s,
and hence also l, will be constants of the motion. We now have the three constant
angular momenta l, s and j, related in the same way as the m, µ and M of �49.
The magnitudes, l, s and j say, of these angular momenta will be given by
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l + ½~ = (l2x + l2y + l2z + ¼~2)½,
s+ ½~ = (s2x + s2y + s2z + ¼~2)½,
j + ½~ = (j2x + j2y + j2z + ¼~2)½,

corresponding to equation (12) of Chapter VIII, and from (36) of that chapter
we see that with given numerical values for j and s the possible numerical values
for j are

l + s− 1
2
~, l + s− 3

2
~, . . . |l − s|+ 1

2
~.

Let us consider a stationary state for which l, s and j have de�nite numerical
values in agreement with the above scheme. The energy of this state will depend
on l, but one might think that with neglect of the spin magnetic moments it would
be independent of s, and also of the direction of the vector s relative to l, and thus
of j. It will be found in Chapter XI, however, that the energy depends very
much on the magnitude s of the vector s, although independent of its direction
when one neglects the spin magnetic moments, on account of certain phenomena
arising from the fact that the electrons are indistinguishable one from another.
There are thus di�erent energy-levels of the system for each di�erent value of l
and s. This means that l and s are functions of the energy, according to the general
de�nition of a function given in �15, since the l and s of a stationary state are
�xed when the energy of that state is �xed.

We can now take into account the e�ect of the spin magnetic moments,
treating it as a small perturbation according to the method of �51. The energy
of the unperturbed system will still be approximately a constant of the motion
and hence l and s, being functions of this energy, will still be approximately
constants of the motion. The directions of the vectors l and s, however, not being
functions of the unperturbed energy, need not now be approximately constants of
the motion and may undergo large secular variations. Since the vector j is constant,
the only possible variation of l and s is a precession about the vector j. We thus
have an approximate model of the atom consisting of the two vectors l and s of
constant lengths precessing about their sum j, which is a �xed vector. The energy
is determined mainly by the magnitudes of l and s and depends only slightly on
their relative directions, speci�ed by j. Thus states with the same l and s and
di�erent j will have only slightly di�erent energy-levels, forming what is called
a multiplet term.

Let us now suppose our atom to be subjected to a uniform magnetic �eld of
magnitude H in the direction of the z-axis. The extra energy due to this magnetic
�eld will consist of a term*

eH /2mc · (mz + ~σz), (29)

*`·' replaces `.'
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like the last term in equation (34) of Chapter VIII, contributed by each electron,
and will thus be altogether*

eH /2mc ·
∑

(mz + ~σz) = eH /2mc · (lz + 2sz) = eH /2mc · (jz + sz). (30)

This is our perturbing energy V. We shall now use the method of �51 to determine
the changes in the energy-levels caused by this V. The method will be legitimate
only provided the �eld is so weak that V is small compared with the energy
di�erences within a multiplet.

Our unperturbed system is degenerate, on account of the direction of
the vector j being undetermined. We must therefore take, from the representative
of V in a Heisenberg representation for the unperturbed system, those matrix
elements that refer to one particular energy-level for their row and column,
and obtain the eigenvalues of the matrix thus formed. We can do this best by �rst
splitting up V into two parts, one of which is a constant of the unperturbed motion,
so that its representative contains only matrix elements referring to the same
unperturbed energy-level for their row and column, while the representative of
the other contains only matrix elements referring to two di�erent unperturbed
energy-levels for their row and column, so that this second part does not a�ect
the �rst-order perturbation. The term involving jz in (30) is a constant of
the unperturbed motion and thus belongs entirely to the �rst part. For the term
involving sz we have

sz(j
2
x + j2y + j2z ) = jz(sxjx + syjy + szjz) + (szjx − jzsx)jx + (szjy − jzsy)jy

or
sz =

jz
j2−¼~2

½[(j2−¼~2)−(l2−¼~2)+(s2−¼~2)]+ 1

j2−¼~2
[γyjx−γxjy], (31)

where γx = szjy − jzsy = szly − lzsy = lysz − lzsy,
γy = jzsx − szjx = lzsx − szlx = lzsx − lxsz.

}
(32)

The �rst term in this expression for sz is a constant of the unperturbed motion and
thus belongs entirely to the �rst part, while the second term, as we shall now see,
belongs entirely to the second part.

Corresponding to (32) we can introduce

γz = lxsy − lysx.
It can now easily be veri�ed that

jxγx + jyγy + jzγz = 0

and that
[jz, γx] = γy, [jz, γy] = −γx, [jz, γz] = 0.

These relations are of the same form as the relations (3), (4) and (5) of
Chapter VIII, so that our γx, γy & γz are connected with the angular momentum j
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in the same way in which the x, y & z of Chapter VIII were connected with
the angular momentum m. We can thus take over the analysis of �47, in which
the condition was obtained for the non-vanishing of a matrix element of x, y
and z in a representation in which k is diagonal. We �nd in this way that
the only non-vanishing matrix elements of γx, γy, and γz in a representation in
which j is diagonal are those referring to transitions in which j changes by ±~.
The coe�cients of γx and γy in the second term on the right-hand side of (31)
commute with j, so that the representative of the whole of this term will contain
only matrix elements referring to transitions in which j changes by ±~, and thus
referring to two di�erent energy-levels of the unperturbed system.

Hence the perturbing energy V becomes, when we neglect that part of it whose
representative consists of matrix elements referring to two di�erent unperturbed
energy-levels,

eH

2mc
jz

{
1 + ½

(j2 − ¼~2)− (l2 − ¼~2) + (s2 − ¼~2)
j2 − ¼~2

}
. (33)

The eigenvalues of this give the �rst-order changes in the energy-levels. We can
make the representative of this expression diagonal by choosing our representation
such that jz is diagonal, i.e. by taking the fundamental states to be spacially
quantized in the z-direction. The expression (33) then gives us directly
the �rst-order changes in the energy-levels caused by the magnetic �eld.
This expression is known as Landé's formula.

The result (33) holds only provided the perturbing energy V is small compared
with the energy di�erences within a multiplet. For larger values of V a more
complicated theory is required. For very strong �elds, however, for which V is
large compared with the energy di�erences within a multiplet, the theory is again
very simple. We may now neglect altogether the energy of the spin magnetic
moments for the atom with no external �eld, so that for our unperturbed system
the vectors l and s themselves are constants of the motion, and not merely their
magnitudes l and s. Our perturbing energy V , which is still* eH /2mc · (jz + sz),
is now a constant of the motion for the unperturbed system, so that its eigenvalues
give directly the changes in the energy-levels. These eigenvalues are integral or
half-odd integral multiples of eH ~/2mc according to whether the number of
electrons is even or odd.

*`·' replaces `.'
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56. General Remarks

In this chapter we shall investigate problems connected with a particle which,
coming from in�nity, encounters or `collides with' some atomic system and, after
being scattered through a certain angle, goes o� to in�nity again. The atomic
system which does the scattering we shall call, for brevity, the scatterer. We thus
have a dynamical system composed of an incident particle and a scatterer
interacting with each other, which we must deal with according to the laws of
quantum mechanics, and for which we must, in particular, calculate the probability
of scattering through any given angle. This problem was �rst solved by Max Born
by a method substantially� equivalent to that of the next section. We must take
into account the possibility that the scatterer, considered as a system by itself,
may have a number of di�erent stationary states and that if it is initially in one
of these states when the particle arrives from in�nity, it may be left in a di�erent
one when the particle goes o� to in�nity again. The colliding particle may thus
induce transitions in the scatterer.

The Hamiltonian for the whole system of scatterer plus particle will not
involve the time explicitly, so that this whole system will have stationary states
represented by periodic solutions of Schrödinger's wave equation. The meaning
of these stationary states requires a little care to be properly understood. It is
evident that for any state of the system the particle will spend nearly all its time
at in�nity, so that the time average of the probability of the particle being in
any �nite volume will be zero. Now for a stationary state the probability of
the particle being in a given �nite volume, like any other result of observation,
must be independent of the time, and hence this probability will equal its time
average, which we have seen is zero. We shall thus be interested only in the relative
probabilities of the particle being in di�erent �nite volumes, their absolute values
being all zero. Mathematically we have that if the ψ denoting a stationary
state is normalized correctly for physical interpretation, i.e such that φψ = 1,

�Original:- substantianally
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and if we let Q denote that observable, which is a certain function of the position
of the particle (at a given time), that is equal to unity if the particle is in a given
�nite volume and zero otherwise, then φQψ = 0, meaning that the average value
of Q, i.e. the probability of the particle being in the given volume, is zero.
It would therefore be more convenient for us to denote the stationary state by
a ψ normalized to in�nity, i.e. for which φψ → ∞,� the in�nity being such as
to make φQψ �nite. This �nite φQψ would then give the relative probability of
the particle being in the given volume.

In picturing a state of a system denoted by a ψ which is not normalized correctly
for physical interpretation, but for which φψ = n say, it may be convenient
to suppose that we have n similar systems all occupying the same space but
with no interaction between them, so that each one follows out its own motion
independently of the others. We can then interpret φαψ, where α is any
observable, directly as the total α for all the n systems. In applying these ideas
to the above-mentioned ψ normalized to in�nity, denoting a stationary state of
the system of scatterer plus colliding particle, we should picture an in�nite number
of such systems with the scatterers all located at the same point and the particles
distributed continuously throughout space. The number of particles in a given
�nite volume would be pictured as φQψ, Q being the observable de�ned above,
which has the value unity when the particle is in the given volume and zero
otherwise. If the ψ is represented by a Schrödinger wave function involving
the Cartesian co-ordinates of the particle, then the square of the modulus of
the wave funetion could be interpreted directly as the density of particles in
the picture. One must remember, however, that each of these particles has its own

individual scatterer. Di�erent particles may belong to scatterers in di�erent states.
There will thus be one particle density for each state of the scatterer, namely,
the density of those particles belonging to scatterers in that state. This is
taken account of by the wave function involving variables deseribing the state
of the scatterer in addition to those describing the position of the particle.

For determining scattering coe�cients we have to investigate stationary states

of the whole system of scatterer plus particle. For instance, if we want to determine
the probability of scattering in various directions when the scatterer is initially in
a given stationary state and the incident particle has initially a given velocity
in a given direction, we must investigate that stationary state of the whole
system whose picture, according to the above method, contains at great distances
from the point of location of the scatterers only particles moving with the given
initial velocity and direction and belonging each to a scatterer in the given
initial stationary state, together with particles moving outward from the point
of location of the scatterers and belonging possibly to scatterers in various

�Original:- φψ =∞
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stationary states. This picture corresponds closely to the actual state of a�airs
in an experimental determination of scattering coe�cients, with the di�erence
that the picture really describes only one actual system of scatterer plus particle.
The distribution of outward moving particles at in�nity in the picture gives
us immediately all the information about scattering coe�cients that could be
obtained by experiment. For practical calculations about the stationary state
described by this picture one may use the perturbation method of �51, taking as
unperturbed system, for example, that for which there is no interaction between
the scatterer and particle.

In dealing with collision problems, a further possibility to be taken into
consideration is that the scatterer may perhaps be capable of absorbing and
re-emitting the particle. This possibility arises when there exists one or
more states of absorption of the whole system, a state of absorption being
an approximately stationary state which, at a certain time, is closed in the sense
of �45 (i.e. the probability of the particle being at a greater distance than r from
the scatterer tends to zero as r → ∞). Since a state of absorption is only
approximately stationary, its property of being closed will be only a transient
one and after a su�cient lapse of time there will be a �nite probability of
the particle being on its way to in�nity. Physically this means there is a �nite
probability of spontaneous emission of the particle. The fact that we had to use
the word `approximately' in stating the conditions required for the phenomena
of emission and absorption to be able to occur shows that these conditions are
not expressible in exact mathematical language. One can give a meaning to these
phenomena only when one is using a perturbation method. They occur when
the unperturbed system (of scatterer plus particle) has stationary states that
are closed. The perturbation now spoils the stationary property of these states
and gives rise to spontaneous emission and its converse absorption.

For calculating absorption and emission probabilities it is necessary to deal
with non-stationary states of the system, in contradistinction to the case for
scattering coe�cients, so that the perturbation method of �52 must be used.
Thus for calculating an emission coe�cient we must consider the non-stationary
states of absorption described above. Again, since an absorption is always followed
by a re-emission, it cannot be distinguished from a scattering in any experiment
involving a steady state of a�airs, corresponding to a stationary state of the system.
The distinction can be made only by reference to a non-steady state of a�airs,
e.g. by use of a stream of incident particles that has a sharp beginning, so that
the scattered particles will appear immediately after the incident particles meet
the scatterers, while those that have been absorbed and re-emitted will begin
to appear only some time later. This stream of particles would then be the picture
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of a certain non-stationary ψ, normalized to in�nity, which could be used for
obtaining the absorption coe�cient.

57. The Scattering Coe�cient

We shall now consider the calculation of scattering coe�cients, taking �rst the
case when there is no absorption and emission, which means that our unperturbed
system has no closed stationary states. We may conveniently take this unperturbed
system to be that for which there is no interaction between the scatterer and
particle. Its Hamiltonian will thus be of the form

H0 = Hs +W, (1)

where Hs is that for the scatterer alone andW that for the particle alone, namely*

W = 1/2m · (p2x + p2y + p2z). (2)

The perturbing energy V , assumed small, will now be a function of the Cartesian
co-ordinates of the particle x, y, z and also, perhaps, of its momenta px, py, pz,
together with dynamical variables describing the scatterer.

Since we are now interested only in stationary states of the whole system,
we can use the perturbation method of �51. Our unperturbed system now
necessarily has a continuous range of energy-levels, since it contains a free
particle, and this gives rise to certain modi�cations in the perturbation method.
The question of the change in the energy-levels caused by the perturbation, which
was the main question of �51, no longer has a meaning, and the convention in �51
of using the same number of primes to denote nearly equal eigenvalues of H0

and H now becomes redundant�. Again the problem of secular perturbations
cannot now arise, since if the unperturbed system is degenerate the perturbed one,
which must also have a continuous range of energy-levels, will also be degenerate
to exactly the same extent. Any eigen-ψ of the unperturbed Hamiltonian H0,
belonging to the eigenvalue H ′0 say, will be approximately equal to some eigen-ψ
of H, and indeed to each of an in�nity of eigen-ψ's of H belonging to a small
range of eigenvalues H ′ approximately equal to H ′0. (The meaning of two
ψ-symbols being approximately equal cannot be accurately de�ned in the case
of continuous eigenvalues without a more rigorous theory than that aimed at in
the present work. It should be noticed, though, that this meaning is such that
two eigen-ψ's of an observable belonging to two nearly equal eigenvalues may be
approximately equal, in spite of the fact that they are orthogonal.)

*`·' replaces `.'
�Original:- drops out
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We again express the stationary state ψ(H ′) of the perturbed system as
the sum of an eigen-ψ ψ(H ′0) of the unperturbed Hamiltonian and a small
correction ψ1. We can no longer, however, take ψ1 to be orthogonal to ψ(H1),
as in equation (5) of �51. The reason for this is that when we introduce our
ψ1 as in equation (4) of �51 and then express this ψ1 as the sum of two parts,
one a numerical multiple of ψ(H ′0), and the other orthogonal to ψ(H ′0), these parts
may both be large, in the case of continuous eigenvalues H ′0, in spite of their sum
being small. For example, these parts could be respectively of the form ψ(H ′0) and
−ψ(H ′0 + δH ′0). Thus we cannot have our ψ1 both small and orthogonal to ψ(H ′0)
and we prefer to have it small. To make up for this lack of simplicity in ψ1 we can
now take H ′0 exactly equal to H ′. Let us call this number H ′0 or H ′, equal to
the energy of the stationary state we are seeking, E. We now have the equation

(E −H0)ψ(H ′) = V ψ(H ′) (3)

which gives (E −H0)ψ1 = V ψ(H ′)

or (E −Hs −W )ψ1 = V ψ(H ′0) (4)

from (1), with neglect of the second-order term V ψ1. We shall use this equation (4)
for determining the stationary states of the perturbed system to the �rst order.

Let α denote a complete set of commuting variables describing the scatterer,
which are constants of the motion when the scatterer is alone, and may thus be
used for labelling the stationary states of the scatterer. This requires that Hs shall
commute with the α's and be a function of them. We can now take a representation
of the whole system in which the α's and x, y, z, the co-ordinates of the particle,
are diagonal. This will make Hs diagonal. Let ψ(H ′0) be represented by (xα|0) and
ψ1 by (xα|1), the single variable x being written in the wave function to denote
x, y and z. In the same way the single di�erential dx will be written to denote
the product dxd yd z. Equation (4), written in terms of representatives, becomes,
with the help of (2),*

{E −Hs(α
′) + ~2/2m · ∇2}(xα′|1) =

∑
α′′

∫
(xα′|V |x′′α′′) dx′′ (x′′α′′|0) (5)

Suppose that the incident particle has the momentum p0 and that the
initial stationary state of the scatterer is α0. The stationary state ψ(H ′0) of
our unperturbed system is now the one for which p = p0 and α = α0, and hence
its representative is of the form

(xα|0) = δαα0ei(p
0,x)/~. (6)

This makes equation (5) reduce to*

{E −Hs(α
′) + ~2/2m · ∇2}(xα′|1) =

∫
(xα′|V |x0α0) dx0 ei(p

0,x0)/~
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or {k2 +∇2}(xα′|1) = F, (7)

where* k2 = 2m/~2 · {E −Hs(α
′)} (8)

and* F = 2m/~2 ·
∫

(xα′|V |x0α0) dx0 ei(p
0,x0)/~ (9)

a de�nite function of x, y, z and α′. We must also have

E = H ′0 = Hs(α
0) + p02/2m. (10)

Our problem now is to obtain a solution (xα′|1) of (7) which, for values of x, y &
z denoting points far from the scatterer, represents only outward moving particles.
The square of its modulus, |(xα′|1)|2, will then give the density of scattered
particles belonging to scatterers in the state α′ when the density of the incident
particles is |(xα|0)|2, which is unity. If we transform to polar co-ordinates r, θ, φ,
equation (7) becomes{

k2 +
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

}
(rθφα′|1) = F. (11)

Now F must tend to zero as r →∞, on account of the physical fact that
the interaction energy between the scatterer and particle must tend to zero as
the distance between them tends to in�nity. If we neglect F in (11) altogether,
an approximate solution for large r is*

(rθφα′|1) = u(θ, φ, α′)/r · eikr, (12)

where u is an arbitrary function of θ, φ and α′, since this expression substituted
in the left-hand side of (11) gives a result of order r−3. When we do not neglect F ,
the solution of (11) will still be of the form (12) for large r, provided F tends to
zero su�ciently rapidly as r → ∞, but the function u will now be de�nite and
determined by the solution for smaller values of r.

For values α′ of the α's such that k2, de�ned by (8), is positive, the k in (12)
must be chosen to be the positive square root of k2, in order that (12) may represent
only outward moving particles, i.e. particles for which the radial component of
momentum pr, represented by −i~ ∂/∂r, has a positive value. We now have
that the density of scattered particles belonging to scatterers in state α′, equal
to the square of the modulus of (12), falls o� with increasing r according to
the inverse square law, as is physically necessary, and their angular distribution
is given by |u(θ, φ, α′)|2. Further, the magnitude, P ′ say, of the momentum of
these scattered particles is equal to k~, since the exponential in (12) must be of
the form eiP

′r/~, so that their energy is equal to

P ′2

2m
=
k2~2

2m
= E −Hs(α

′) = Hs(α
0)−Hs(α

′) + p02/2m,

*`·' replaces `.'
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with the help of (8) and (10). This is just the energy of an incident particle, namely
p02/2m, reduced by the increase in energy of the scatterer, namelyHs(α

′)−Hs(α
0),

in agreement with the law of conservation of energy. For values α′ of the α's such
that k2 is negative there are no scattered particles, the total initial energy being
insu�cient for the scatterer to be left in the state α′.

We must now evaluate u(θ, φ, α′) for a set of values α′ for the α's such that k2 is
positive, and obtain the angular distribution of the scattered particles belonging to
scatterers in state α′. It is su�cient to evaluate u for the direction θ = 0 of the pole
of the polar co-ordinates, since this direction is arbitrary. We make use of Green's
theorem, which states that for any two functions of position A and B the volume
integral

∫
(A∇2B − B∇2A) dx taken over any volume equals the surface integral∫

(A∂B/∂n−B ∂A/∂n) dS taken over the boundary of the volume, ∂/∂n denoting
di�erentiation along the normal to the surface. We take

A = e−ikr cos θ, B = (rθφα′|1)

and apply the theorem to a large sphere with the origin as centre. The volume
integrand is thus

e−ikr cos θ∇2(rθφα′|1)− (rθφα′|1)∇2e−ikr cos θ

= e−ikr cos θ(∇2 + k2)(rθφα′|1) = e−ikr cos θF

from (7) or (11), while the surface integrand is, with the help of (12),*

e−ikr cos θ
∂

∂r
(rθφα′|1)− (rθφα′|1)

∂

∂r
e−ikr cos θ

= e−ikr cos θu

(
− 1

r2
+
ik

r

)
eikr + i

u

r
eikrk cos θ e−ikr cos θ

= iku/r · (1 + cos θ)eikr(1−cos θ)

with neglect of r−2. Hence we get*∫
e−ikr cos θF dx =

∫ 2π

0

dφ

∫ π

0

r2 sin θ d θ · iku/r · (1 + cos θ)eikr(1−cos θ)

= ikr

∫ 2π

0

dφ

∫ 2

0

dγ · u(θ, φ, α′)(2− γ)eikrγ,

where γ = 1 − cos θ, the volume integral on the left being taken over the whole
of space. The right-hand side becomes, on being integrated by parts with respect
to γ,*∫ 2π

0

dφ

{[
u(θ, φ, α′)(2− γ)eikrγ

]γ=2

γ=0

−
∫ 2

0

dγ · eikrγ ∂
∂γ

[u(θ, φ, α′)(2− γ)]

}
.
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The second term in the {} brackets is of the order of magnitude of r−1, as would be
revealed by further partial integrations, and may therefore be neglected. We are
thus left with∫

e−ikr cos θF dx = −2

∫ 2π

0

dφ u(0, φ, α′) = −4πu(0, φ, α′),

giving the value of u(θ, φ, α′) for the direction θ = 0.
This result may be written*

u(0, φ, α′) = −1/4π ·
∫
e−iP

′r cos θ/~F dx, (13)

since P ′ = k~. If the vector p′ denotes the momentum of the scattered electrons
coming o� in a certain direction (and is thus of magnitude P ′), the value of u for
this direction will be*

u(θ′, φ′, α′) = −1/4π ·
∫
e−i(p

′,x)/~F dx,

as follows from (13) if one takes this direction to be the pole of the polar
co-ordinates. This becomes, with the help of (9),*

u(θ′, φ′, α′) = −m/2π~2 ·
∫∫

e−i(p
′,x)/~ dx (xα′|V |x0α0) dx0 ei(p

0,x0)/~

= −2πmh(p′α′|V |p0α0), (14)

when one makes a transformation from the co-ordinates x to the momenta p of
the particle, using the transformation function (36) of Chapter VI. The single
letter p is here used to denote the three components of momentum.

The density of scattered particles belonging to scatterers in state α′ is now
given by |u(θ′, φ′, α′)|2 /r2. Since their velocity is P ′/m, the rate at which
these particles appear per unit solid angle about the direction of the vector p′ will
be* P ′/m · |u(θ′, φ′, α′)|2. The density of the incident particles is, as we have seen,
unity, so that the number of incident particles crossing unit area per unit time is
equal to their velocity P 0/m where P 0 is the magnitude of p0. Hence the e�ective
area that must be hit by an incident particle in order to be scattered in a unit solid
angle about the direction p′ and then belong to a scatterer in state α′ will be*

P ′/P 0 · |u(θ′, φ′, α′)|2 = 4π2m2h2P ′/P 0 ·
∣∣(p′α′|V |p0α0)

∣∣2. (15)

This is the scattering coe�cient for transitions α0 → α′ of the scatterer.
It depends on that matrix element (p′α′|V |p0α0) of the perturbing energy V

*`·' replaces`.'
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whose column p0α0 and whose row p′α′ refer respectively to the initial and �nal
states of the unperturbed system, between which the scattering transition process
takes place. The result (15) is thus in some ways analogous to the result (19) or (20)
of Chapter IX, although the numerical coe�cients are di�erent in the two cases,
corresponding to the di�erent natures of the two transition processes.

58. Solution with the p-Representation

The result (15) for the scattering coe�cient makes a reference only to that
representation in which the momentum p is diagonal. One would thus expect
to be able to get a more direct proof of the result by working all the time in
the p-representation, instead of working in the x-representation and transforming
at the end to the p-representation, as was done in �57. This would not at �rst sight
appear to be a great improvement, as the lack of directness of the x-representation
method is o�set by its greater `Anschaulichkeit', it being possible to picture
the square of the modulus of the x-representative of a state as the density
of a stream of particles in process of being scattered. The x-representation
method has, however, other more serious disadvantages. One of the main
applications of the theory of collisions is to the case of photons as incident particles.
Now a photon is not a simple particle but has a polarization. It is evident from
classical electromagnetic theory that a photon with a de�nite momentum, i.e. one
moving in a de�nite direction with a de�nite frequency, may have a de�nite state of
polarization (linear, circular, &c.), while a photon with a de�nite position, which is
to be pictured as an electromagnetic disturbance con�ned to a very small volume,
cannot have any de�nite polarization. These facts mean that the polarization
observable of a photon commutes with its momentum but not with its position.
This results in the p-representation method being immediately applicable to
the case of photons, it being only necessary to introduce the polarizing variable
into the representatives and treat it along with the α's describing the scatterer,
while the x-representation method is not applicable. Further, in dealing with
photons it is necessary to take the relativity variation of mass with velocity
into account. This can easily be done in the p-representation method, but not
so easily in the x-representation method.

Equation (4) still holds when the relativity variation of mass with velocity is
taken into account for the particle, but W is now given by

W 2/c2 = m2c2 + P 2 = m2c2 + p2x + p2y + p2z (16)

instead of by (2). Written in terms of p-representatives, equation (4) becomes

{E −Hs(α
′)−W}(pα′|1) =

∑
α′′

∫
(pα′′|V |p′′α′′) dp′′ (p′′α′′|0),
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W being here understood as a de�nite function of px, py, pz given by (16). This may
be written

{W ′ −W}(pα′|1) =
∑
α′′

∫
(pα′|V |p′′α′′) dp′′ (p′′α′′|0), (17)

where W ′ = E −Hs(α
′′) (18)

and is the energy required by the law of conservation of energy for
a scattered particle belonging to a scatterer in state α′. The p-representative
of ψ(H ′0), obtained by transforming (6) with the transformation function (36) of
Chapter VI, is

(pα|0) = h
3
2 δαα0δ(p− p0) (19)

as may be veri�ed most easily by transforming this back to the x-representation.
The δ(p− p0) means the product

δ(px − p0x)δ(py − p0y)δ(pz − p0z),

Equation (17) now becomes

{W ′ −W}(pα′|1) = h
3
2 (pα′|V |p0α0). (20)

We now make a canonical transformation from the Cartesian co-ordinates px,
py, pz of p to its polar co-ordinates P , ω, χ, given by

px = P cosω, py = P sinω cosχ, pz = P sinω sinχ.

If in the new represcntation we take the weight function P 2 sinω, then the weight
attached to any volume of p-space will be the same as in the previous
p-representation, so that the canonical transformation will mean simply
a relabelling of the rows and columns of the matrices without any alteration of
the matrix elements or of the set of numbers representing a state. Thus (20) will
become in the new representation

{W ′ −W}(Pωχα′|1) = h
3
2 (Pωχα′|V |P 0ω0χ0α0), (21)

W being now a function of the single variable P .
The coe�cient of* (Pωχα′|1), namely {W ′ −W}, is now simply a multiplying

factor and not a di�erential operator as it was with the x-representation method.
We can therefore divide out by this factor and obtain an explicit expression
for (Pωχα′|1). When, however, α′ is such that W ′, de�ned by (18), is greater

*Original:- (Pωχα′|)
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than mc2, this factor will have the value zero for a certain point in the domain
of the variable P , namely the point P = P ′, given in terms of W ′ by (16).
The function (Pωχα′|1) will then have a singularity at this point. This singularity
shows that* (Pωχα′|1) represents an in�nite number of particles moving about at
great distances from the scatterers with energies inde�nitely close to W ′ and it is
therefore this singularity that we have to study to get the angular distribution of
the particles at in�nity.

The result of dividing out (21) by the factor {W ′ −W} is

(Pωχα′|1) = h
3
2 (Pωχα′|V |P 0ω0χ0α0)/{W ′ −W}+ λ(ω, χ, α′)δ(W ′ −W ), (22)

where λ is an arbitrary function of ω, χ and α′, since when an arbitrary multiple
of δ(W ′−W ) is multiplied by W ′−W the product will vanish. To give a meaning
to the �rst term on the right-hand side of (22), we make the convention that
its integral with respect to P over a range that includes the value P ′ is the limit
when ε→ 0 of the integral when the small domain P ′−ε to P ′+ε is excluded from
the range of integration. This is su�cient to make the meaning of (22) precise,
since we are interested e�ectively only in the integrals of the representatives
of states when the representation has continuous ranges of rows and columns.
We see that equation (21) is inadequate to determine the representative (Pωχα′|1)
completely, on account of the arbitrary function λ occurring in (22). We must
choose this λ such that (Pωχα′|1) represents only outward moving particles,
since we want the only inward moving particles to be those represented by (19).

Let us take �rst the general case when the representative (Pωχ|) of a state of
the particle satis�es an equation of the type

{W ′ −W}(Pωχ|) = f(P, ω, χ) (23)

where f(P, ω, χ) is any function of P , ω and χ, and W ′ is a number greater
than mc2, so that (Pωχ|) is of the form

(Pωχ|) = f(P, ω, χ)/{W ′ −W}+ λ(ω, χ)δ(W ′ −W ), (24)

and let us determine now what λ must be in order that (Pωχ|) may represent
only outward moving particles. We can do this by transforming (Pωχ|)
to the x-representation, or rather the (rθχ)-representation, and comparing it
with (12) for large values of r. The transformation function is

(rθφ|Pωχ) = h
− 3

2 ei(p,x)/~ = h
− 3

2 eiPr[cosω cos θ+sinω sin θ cos(χ−φ)]/~.
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For the direction θ = 0 we �nd

(r0φ|) = h
− 3

2

∫ ∞
0

P 2 dP

∫ 2π

0

dχ

∫ π

0

sinω dω eiPr cosω/~(Pωχ|)

= h
− 3

2

∫ ∞
0

P 2 dP

∫ 2π

0

dχ

{
−
[
eiPr cosω/~

iPr/~
(Pωχ|)

]ω=π
ω=0

+

∫ π

0

dω
eiPr cosω/~

iPr/~
∂

∂ω
(Pωχ|)

}
.

The second term in the {} brackets is of order r−2, as may be veri�ed by further
partial integrations with respect to ω, and can therefore be neglected. We are
left with

(r0φ|) = ih−½(2πr)−1
∫ ∞
0

P dP

∫ 2π

0

dχ
{
e−iPr/~(Pπχ|)− eiPr/~(P0χ|)

}
= ih−½r−1

∫ ∞
0

P dP
{
e−iPr/~(Pπχ|)− eiPr/~(P0χ|)

}
. (25)

When we substitute for (Pωχ|) its value given by (24), the �rst term in
the integrand in (25) gives

ih−½r−1
∫ ∞
0

P dP e−iPr/~{f(P, π, χ)/(W ′ −W ) + λ(π, χ)δ(W ′ −W )}. (26)

The term involving δ(W ′ − W ) here may be integrated immediately and gives,
when one uses the relation P dP = W dW /c2, which follows from (16),

ih−½c−2r−1
∫ ∞
mc2

W dW e−iPr/~λ(π, χ)δ(W ′ −W ) = ih−½c−2r−1W ′λ(π, χ)e−iP
′r/~.

(27)
To integrate the other term in (26) we use the formula∫ ∞

0

g(P )
e−iPr/~

P ′ − P
dP = g(P ′)

∫ ∞
0

e−iPr/~

P ′ − P
dP , (28)

with neglect of terms involving r−1, for any continuous function g(P ),
which formula holds since

∫∞
0
K(P )e−iPr/~ dP is of order r−1 for any continuous

function K(P ) and since the di�erence

g(P )/(P ′ − P )− g(P ′)/(P ′ − P )

is continuous. The right-hand side of (28), when evaluated with neglect of terms
involving r−1, and also with neglect of the small domain P ′−ε to P ′+ε in the domain
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of integration, gives

g(P ′)

∫ ∞
−∞

e−iPr/~

P ′ − P
dP = g(P ′)e−iP

′r/~
∫ ∞
−∞

ei(P
′−P )r/~

P ′ − P
dP

= ig(P ′)e−iP
′r/~
∫ ∞
−∞

sin(P ′ − P )r/~
P ′ − P

dP = iπg(P ′)e−iP
′r/~. (29)

In our present example g(P ) is

g(P ) = ih−½r−1Pf(P, π, χ)(P ′ − P )/(W ′ −W ),

which has the limiting value when P = P ′,

g(P ) = ih−½r−1P ′f(P ′, π, χ)W ′/P ′c2 = ih−½c−2r−1W ′f(P ′, π, χ).

Substituting this in (29) and adding on the expression (27), we obtain the following
value for the integral (26)

h−½c−2r−1W ′{−πf(P ′, π, χ)− iλ(π, χ)}e−iP ′r/~. (30)

Similarly the second term in the integrand in (25) gives

h−½c−2r−1W ′{−πf(P ′, 0, χ)− iλ(0, χ)}eiP ′r/~. (31)

The sum of these two expressions is the value of (r0φ|) when r is large.
We require that (r0φ|) shall represent only outward moving particles, and hence

it must be of the form of a multiple of eiP
′r/~. Thus (30) must vanish, so that

λ(π, χ) = −iπf(P ′, π, χ). (32)

We see in this way that the condition that (rθφ|) shall represent only outward
moving particles in the direction θ = 0 �xes the value of λ for the opposite direction
θ = π. Since the direction θ = 0 or ω = 0 of the pole of our polar coordinates is
not in any way singular, we can generalize (32) to

λ(ω, χ) = −iπf(P ′, ω, χ), (33)

which gives the value of λ for an arbitrary direction. This value substituted in
(24) gives a result that may be written

(Pωχ|) = f(P, ω, χ){1/(W ′ −W )− iπδ(W ′ −W )}, (34)

since one can substitute P ′ for P in the coe�cient of a term involving δ(W ′−W ) as
a factor without changing the value of the term. The condition that (Pωχ|) shall

represent only outward moving particles is thus that it shall contain the factor

{1/(W ′ −W )− iπδ(W ′ −W )}. (35)
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With λ given by (33), expression (30) vanishes and the value of (r0φ|) for
large r is given by expression (31) alone, thus

(r0φ|) = −2πh−½c−2r−1W ′f(P ′, 0, χ)eiP
′r/~.

This may be generalized to (rθφ|) = −2πh−½c−2r−1W ′f(P ′, ω, χ)eiP
′r/~,

giving the value of (rθφ|) for any direction θ & φ in terms of f(P ′, ω, χ) for the
same direction labelled by ω & χ. This is of the form (12) with

u(θ, φ) = −2πh−½c−2W ′f(P ′, ω, χ)

and thus represents a distribution of outward moving particles of momentum P ′

whose number is
c2P ′

W ′ |u|
2 =

4π2W ′P ′

hc2
|f(P ′, ω, χ)|2 (36)

per unit solid angle per unit time. This distribution is the one represented by
the (Pωχ|) of (34).

From this general result we can infer that, whenever we have a representative
(Pωχ|) representing only outward moving particles and satisfying an equation of
the type (23), the number per unit solid angle per unit time of these particles is
given by (36). If this (Pωχ|) occurs in a problem in which the number of incident
particles is one per unit volume, it will correspond to a scattering coe�cient
of amount

4π2W 0W ′P ′

hc4P 0
|f(P ′, ω, χ)|2. (37)

It is only the value of the function f(P, ω, χ) for the point P = P ′ that is
of importance.

If we now apply this general theory to our equations (21) and (22), we have

f(P, ω, χ) = h
3
2 (Pωχα′|V |P 0ω0χ0α0).

Hence from (37) the scattering coe�cient is*

(4π2h2W 0W ′P ′/c4P 0) ·
∣∣(P ′ωχα′|V |P 0ω0χ0α0)

∣∣2. (38)

If one neglects relativity and puts W 0W ′/c4 = m2, this result reduces to
the result (15) obtained in the preceding section by means of Green's theorem.

*`·' replaces `.'
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59. Dispersive Scattering

We shall now determine the scattering when the incident particle is capable of
being absorbed, that is, when our unperturbed system of scatterer plus particle
has closed stationary states with the particle absorbed. The existence of these
closed states for the unperturbed system will be found to have a considerable e�ect
on the scattering for the perturbed system, and indeed an e�ect that depends very
much on the energy of the incident particle, giving rise to the phenomenon of
dispersion in optics when the incident particle is taken to be a photon.

We use a representation for which the basic kets correspond to the stationary
states of the unperturbed system, as was the case with the p-representation of
the preceding section. These stationary states are now the states ψ(p′α′) for which
the particle has a de�nite momentum p′ and the scatterer is in a de�nite state
α′, together with the closed states, ψk say, which form a separate discrete set.
We shall assume that these states are all independent and orthogonal, so that
our representation is of the usual orthogonal type. This assumption is probably
not justi�able when the particle is an electron or atomic nucleus, since in this case
for an absorbed state ψk the particle will still certainly be somewhere, so that
one would expect to be able to expand ψk in terms of the eigen-ψ's ψ(x′α′) of
x, y, z and the α's, and hence also in terms of the ψ(p′α′)'s. On the other hand,
when the particle is a photon it will no longer exist for the absorbed states,
which are then certainly independent of and orthogonal to the states ψ(p′α′)
for which the particle does exist. Thus the assumption is valid in this case, which
is an important practical one.

The representative of a state will now consist of a diserete set of numbers (k|)
referring to the fundamental states ψk together with the three-dimensional
continuous ranges of numbers (p′α′|) referring to the ψ(p′α′), there being one
such range for each set of values α′ for the α's. Similarly the matrices representing
observables will now contain discrete rows and columns labelled by k together with
continuous ranges labelled by (p, α). Thus, for example, the matrix representing V ,
the perturbing energy, will have elements (k′|V |k′′), (k′|V |p′′α′′), (p′α′|V |k′′) and
(p′α′|V |p′′α′′).

Since we are concerned with scattering, we must still deal with stationary

states of the whole system, which will still be given by an equation of the type (3).
We shall now, however, have to work to the second order of accuracy, so that
we cannot simply use the �rst-order equation (4). The exact equation (3) gives,
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when written in terms of representatives,

{W ′ −W}(pα′|) =
∑
α′′

∫
(pα′|V |p′′α′′) dp′′ (p′′α′′|) +

∑
k′′

(pα′|V |k′′)(k′′|)

{E − Ek}(k|) =
∑
α′′

∫
(k|V |p′′α′′) dp′′ (p′′α′′|) +

∑
k′′

(k|V |k′′)(k′′|),

 (39)

where W ′ is given by (18) and Ek is the energy of the stationary state ψk of
the unperturbed system. If we suppose the exact ψ(H ′) to be expressed as the sum
of ψ(H ′0), a �rst-order correction ψ1, a second-order correction ψ2, and so on, thus

ψ(H ′) = ψ(H ′0) + ψ1 + ψ2 + · · · ,

the r-th-order correction will be given in terms of the (r − 1)-th by

(E −H0)ψr = V ψr−1.

Thus its representative (pα′|r), (k|r) will be given by

{W ′−W}(pα′|r) =
∑
α′′

∫
(pα′|V |p′′α′′) dp′′ (p′′α′′|r−1) +

∑
k′′

(pα′|V |k′′)(k′′|r−1)

{E − Ek}(k|r) =
∑
α′′

∫
(k|V |p′′α′′) dp′′ (p′′α′′|r−1) +

∑
k′′

(k|V |k′′)(k′′|r−1).


(40)

For r = 1 these equations are just the generalization of (17) when there exist
absorbed states ψk. The unperturbed stationary state ψ(p0α0) will now be
represented by

(pα|0) = h
3
2 δαα0δ(p− p0), (k|0) = 0, (41)

instead of merely by (19), so the �rst-order correction will be given by

{W ′ −W}(pα′|1) = h
3
2 (pα′|V |p0α0) (42)

{E − Ek}(k|1) = h
3
2 (k|V |p0α0). (43)

We may assume that the matrix elements (k′|V |k′′) of V vanish,
since these matrix elements are not essential to the phenomena under investigation,
and if they did not vanish it would mean simply that the absorbed states
ψk had not been suitably chosen. We shall further assume that the matrix
elements (p′α′|V |p′′α′′) are of the second order of smallness when the matrix
elements (k′|V |p′′α′′), (p′α′|V |k′′) are taken to be of the �rst order of smallness.
This assumption will be justi�ed for the case of photons in Chapter XII. We now
have from (43) and (42) that (k|1) is of the �rst order of smallness, provided E
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does not lie near one of the discrete set of energy-levels Ek, and (pα|1) is of
the second order. The value of (pα|2) to the second order will thus be given,
from the �rst of equations (40), by

{W ′ −W}(pα′|2) = h
3
2

∑
k′′

(pα′|V |k′′)(k′′|V |p0α0)/{E − Ek′}

The total correction of the second-order, arising partly from (pα|1) and partly
from (pα|2), therefore satis�es

{W ′−W}{(pα′|1)+(pα′|2)}= h
3
2

{
(pα′|V |p0α0)+

∑
k

(pα′|V |k)(k|V |p0α0)/(E−Ek)

}
.

This equation is of the type (23), provided α′ is such that W ′ > mc2, which means
that α′ as a �nal state for the scatterer is not inconsistent with the law of
conservation of energy. We can therefore infer from the general result (37) that
the scattering coe�cient is

4π2h2W 0W ′P ′

c4P 0

∣∣∣∣∣(p′α′|V |p0α0) +
∑
k

(p′α′|V |k)(k|V |p0α0)

E − Ek

∣∣∣∣∣
2

. (44)

The scattering may now be considered as composed of two parts, a part that
arises from the matrix element (p′α′|V |p0α0) of the perturbing energy and a part
that arises from the matrix elements (p′α′|V |k) and (k|V |p0α0). The �rst part,
which is the same as our previously obtained result (38), may be called the true
scattering. The second part may be considered as arising from an absorption of
the incident particle into some state k, followed immediately by a re-emission in
a di�erent direction. The fact that we have to add the two terms before taking
the square of the modulus denotes interference between the two kinds of scattering.
There is no experimental way of separating the two kinds, the distinction between
them being only mathematical.

60. Resonance Scattering

Suppose the energy of the incident particle to be varied continuously while
the initial state α0 of the scatterer is kept �xed, so that the total energy E varies
continuously. The formula (44) now shows that as E approaches one of the discrete
set of energy-levels Ek, the scattering becomes very large. In fact, according to
formula (44) the scattering should be in�nite when E is exactly equal to an Ek.
An in�nite scattering coe�cient is, of course, physically impossible, so that we can
infer that the approximations used in deriving (44) are no longer legitimate when
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E is close to an Ek. To investigate the scattering in this case we must therefore
go back to the exact equations (39) and use a di�erent method of approximating
to their solution.

Let us take one particular Ek and consider the case when E is close to it.
The large term in the scattering coe�cient (44) now arises from those elements of
the matrix representing V that lie in row k or in column k, i.e. those of the type
(k|V |pα) or (pα|V |k). The scattering arising from the other matrix elements of V
is of a smaller order of magnitude. This suggests that in our exact equations (39)
we should make the approximation of neglecting all the matrix elements of V
except the important ones, which are those of the type (pα′|V |k) or (k|V |pα′),
where α′ is a state of the scatterer that has not too much energy to be disallowed
as a �nal state by the law of conservation of energy. These equations then reduce to

{W ′ −W}(pα′|) = (pα′|V |k)(k|) (45)

{E − Ek}(k|) =
∑
α′

∫
(k|V |pα′) dp (pα′|) (46)

the α′ summation being over those values of α′ for which W ′ given by (18)
is > mc2. These equations are now su�ciently simple for us to be able to solve
exactly without further approximation.

From (45) we obtain by division

(pα′|) = (pα′|V |k)(k|)/{W ′ −W}+ λδ(W ′ −W ) (47)

We must choose λ, which may be any function of the momentum p and α′,
such that (47) represents the incident particles (19) together with only outward
moving particles. [The right-hand side of (19), with α′ substituted for α, is actually
of the form λδ(W ′−W ), since the conditions α = α0 and p = p0 for this right-hand
side not to vanish lead to W ′ = E − Hs(α

′) = E − Hs(α
0) = W 0 and W = W 0,

which together give W ′ = W .] Thus (47) must be

(pα′|) = h
3
2 δ(p′ − p0) + (pα′|V |k)(k|){1/(W ′ −W ) + iπδ(W ′ −W )}. (48)

and from the general formula (37) the scattering coe�cient will be*

(4π2W 0W ′P ′/hc4P 0) · |(p′α′|V |k)|2 |(k|)|2. (49)

It remains for us to determine the value of (k|). We can do this by substituting
for (pα′|) in (46) its value given by (48). This gives

{E−Ek}(k|)=h
3
2 (k|V |p0α0)+(k|)

∑
α′

∫
|(k|V |pα′)|2{1/(W ′−W )−iπδ(W ′−W )} dp

=h
3
2 (k|V |p0α0) + (k|){a− ib},

*`·' replaces `.' and the �rst factor is bracketed.
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where a =
∑
α′

∫
|(k|V |pα′)|2 dp /(W ′ −W ) (50)

and b = π
∑
α′

∫
|(k|V |pα′)|2 δ(W ′ −W ) dp

= π
∑
α′

∫∫∫
|(k|V |Pωχα′)|2 δ(W ′ −W )P 2 dP sinω dω dχ

= π
∑
α′

P ′W ′c−2
∫∫
|(k|V |P ′ωχα′)|2 sinω dω dχ . (51)

Thus (k|) = h
3
2 (k|V |p0α0)/{E − Ek − a+ ib}. (52)

Note that a and b are real and that b is positive.
This value for (k|) substituted in (49) gives for the scattering coe�cient

4π2h2W 0W ′P ′

c4P 0

|(p′α′|V |k)|2 |(k|V |p0α0)|2

(E − Ek − a)2 + b2
(53)

One can obtain the total e�ective area that the incident particle must hit in order
to be scattered anywhere by integrating (53) over all directions of scattering,
i.e. by integrating over all directions of the vector p′ with its magnitude kept
�xed at P ′, and then summing over all α′ that are to be taken into consideration,
i.e. for which W ′ > mc2. This gives, with the help of (51), the result

4πh2W 0

c2P 0

b |(k|V |p0α0)|2

(E − Ek − a)2 + b2
(54)

If we suppose E to vary continuously through the value Ek, the main variation
of (53) or (54) will be due to the small denominator (E−Ek−a)2+b2. If we neglect
the dependence of the other factors in (53) and (54) on E, then the maximum
scattering will occur when E has the value Ek + a and the scattering will be half
its maximum when E di�ers from this value by an amount b. The large amount
of scattering that occurs for values of the energy of the incident particle that
make E nearly equal to Ek give rise to the phenomenon of an absorption line.
The centre of the line is displaced by an amount a from the resonance energy of
the incident particle, i.e. the energy which would make the total energy just Ek,
while the quantity b is what is sometimes called the half-width of the line.

61. Emission and Absorption

For studying emission and absorption we must consider non-stationary states of the
system and must use the perturbation method of �52. To determine the coe�cient
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of spontaneous emission we must take a state for which the particle is initially
absorbed, so that the representative of the state is then

(k|) = 1, (pα|) = 0,

and determine the probability that at some later time the particle shall be on
its way to in�nity with a de�nite momentum. The method of �54 can now
be applied. From the result (28) of that section we see that the probability per
unit time per unit range of ω and χ of the particle being emitted in any direction
ω′, χ′ with the scatterer being left in state α′ is*

2π/~ · |(k|V |W ′ω′χ′α′)|2, (55)

provided, of course, that α′ is such that the energyW ′, given by (18), of the particle
is greater than mc2. For values of α′ that do not satisfy this condition there
is no emission possible. The matrix element (k|V |W ′ω′χ′α′) here must refer to
a representation in which W , ω, χ and α are diagonal with the weight function
unity. The matrix elements of V appearing in the three preceding sections refer to
a representation in which px, py, pz are diagonal with the weight function unity,
or P , ω, χ are diagonal with the weight function P 2 sinω. They would thus
refer to a representation in which W , ω, χ are diagonal with the weight function*

dP/dW ·P 2 sinω = WP/c2·sinω. Thus the matrix element (k|V |W ′ω′χ′α′) in (55)
is equal to* (W ′P ′/c2 · sinω′)½ times our previous matrix element (k|V |W ′ω′χ′α′)
or (k|V |p′α′), so that (55) is equal to

2π

~
W ′P ′

c2
sinω′ |(k|V |p′α′)|2.

The probability of emission per unit solid angle per unit time, with the scatterer
simultaneously dropping to state α′, is thus

2π

~
W ′P ′

c2
|(k|V |p′α′)|2. (56)

To obtain the total probability per unit time of the particle being emitted
in any direction, with any �nal state for the scatterer, we must integrate (56)
over all angles ω′, χ′ and sum over all states α′ whose energy Hs(α

′) is such that
Hs(α

′) + mc2 < Ek. The result is just 2b/~, where b is de�ned by (51). There is

thus this simple relation between the total emission coe�cient and the half-breadth

b of the absorption line.

Let us now consider absorption. This requires that we shall study a state for
which initially the particle is certainly not absorbed but is incident with a de�nite

*`·' replaces `.'
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momentum. Thus the initial representative of the state must be of the form (41).
We must now determine the probability of the particle being absorbed after time T .
Since our �nal state ψk is not one of a continuous range, we cannot use directly
the result (28) of �54. If, however, we take

(pα|)0 = δαα0δ(p− p0), (k|)0 = 0, (57)

as the initial representative of the state, the analysis of ��52 and 54 is still
applicable as far as equation (25) and shows us that the probability of the particle
being absorbed into state ψk after time T is

2
∣∣(k|V |p0α0)

∣∣2 [1− cos{(Ek − E)T/~}]/(Ek − E)2.

This corresponds to a distribution of incident particles of density h−3, owing to
the omission of the factor h

3
2 from (57), as compared with (41). The probability of

there being an absorption after time T when there is one incident particle crossing
unit area per unit time is therefore

2h3W 0/c2P 0 ·
∣∣(k|V |p0α0)

∣∣2 [1− cos{(Ek − E)T/~}]/(Ek − E)2. (58)

To obtain the absorption coe�cient we must consider the incident particles not
all to have exactly the same energy W 0 = E −Hs(α

0), but to have a distribution
of energy values about the correct value Ek − Hs(α

0) required for absorption.
If we take a beam of incident particles consisting of one crossing unit area per
unit time per unit energy range, the probability of there being an absorption after
time T will be given by the integral of (58) with respect to E. This integral may
be evaluated in the same way as (26) of �54 and is equal to*

4π2h2W 0T/c2P 0 ·
∣∣(k|V |p0α0)

∣∣2.
The probability per unit time of an absorption taking place with an incident beam
of one particle per unit area per unit time per unit energy range is therefore*

4π2h2W 0/c2P 0 ·
∣∣(k|V |p0α0)

∣∣2, (59)

which is the absorption coe�cient.
The connexion between the absorption and emission coe�cients (59) and (56)

and the resonance scattering coe�cients calculated in the preceding section should
be noted. When the incident beam does not consist of particles all with the same
energy, but consists of a unit distribution of particles per unit energy range crossing
unit area per unit time, the total number of incident particles with energies near
an absorption line that get scattered will be given by the integral of (54) with
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respect to E. If one neglects the dependence of the numerator of (54) on E,
this integral will, since ∫ ∞

−∞

b

(E − Ek − a)2 + b2
dE = π,

have just the value (59). Thus the total number of scattered particles in

the neighbourhood of an absorption line is equal to the total number absorbed.
We can therefore regard all these scattered particles as absorbed particles that are
subsequently re-emitted in a di�erent direction. Further, the number of particles
in the neighbourhood of the absorption line that get scattered per unit solid angle
about a given direction p′ and then belong to scatterers in state α′ will be given by
the integral with respect to E of (53), which integral has in the same way the value

4π2h2W 0W ′P ′

c4P 0

π

b
|(p′α′|V |k)|2

∣∣(k|V |p0α0)
∣∣2

This is just equal to the absorption coe�cient (59) multiplied by the emission
coe�cient (56) divided by 2b/~, the total emission coe�cient. This is in agreement
with the point of view of regarding the resonance scattered particles as those that
are absorbed and then re-emitted, according to which point of view the fraction
of the total number of absorbed particles that are re-emitted in a unit solid angle
about a given direction would be just the emission coe�cient for this direction
divided by the total emission coe�cient, provided the absorption and emission
processes are governed independently each by its own probability law.



XI. SYSTEMS CONTAINING

SEVERAL SIMILAR PARTICLES

62. Symmetrical and Antisymmetrical States

If a system in atomic physics contains a number of particles of the same kind,
e.g. a number of electrons, the particles are absolutely indistinguishable one from
another. No observable change is made when two of them are interchanged.
This circumstance gives rise to some curious phenomena in quantum mechanics
having no analogue in the classical theory, which arise from the fact that in
quantum mechanics a transition may occur resulting in merely the interchange
of two similar particles, which transition then could not be detected by any
observational means. A satisfactory theory ought, of course, to count two
observationally indistinguishable states as the same state and to deny that any
transition does occur when two similar particles exchange places. We shall
�nd that such a theory can be developed in agreement with the principles of
quantum mechanics.

Suppose we have a system containing n similar particles. We may take
as our dynamical variables a set of variables ξ1 describing the �rst particle,
the corresponding set ξ2 describing the second particle, and so on up to the set ξn
describing the n-th particle. We shall then have the ξr's commuting with the ξs's
for r 6= s. (We may require certain extra variables, describing what the system
consists of in addition to the n similar particles, but it is not necessary to mention
these explicitly in the present chapter.) The Hamiltonian describing the motion
of the system will now be expressible as a function of the ξ1, ξ2, . . . , ξn. The fact
that the particles are similar requires that the Hamiltonian shall be a symmetrical

function of the ξ1, ξ2, . . . , ξn, i.e. it shall remain unchanged when the sets of
variables ξr are interchanged or permuted in any way. This condition must hold
no matter what perturbations are applied to the system.

We may take a representation with observables q1, q2, . . . , qn diagonal, which
are such that the q1's are the values at time t of certain commuting dynamical
variables describing the �rst particle, the q2's are the values at time t of the

193
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corresponding variables describing the second particle, and so on. We may further
choose the phases of the representation in the same way for each of the particles.
(This means, for example, that if a certain momentum p1 describing the �rst
particle is represented by −i~∂/∂q1, the corresponding momentum pr describing
the r-th particle must be represented by −i~∂/∂qr.) The representation will then
treat all the particles on the same footing. The condition that the HamiltonianH is
symmetrical between all the particles may now be expressed by the condition that
its representative (q′1q

′
2 . . . q

′
n|H|q′′1q′′2 . . . q′′n), or (q′|H|q′′) for brevity, is symmetrical

between all the q's, i.e. that it remains unchanged if any permutation is applied
to the q′'s and the same permutation to the q′′'s. This condition may be expressed
analytically thus,

(q′|H|q′′) = (Pq′|H|Pq′′), (1)

where P denotes any permutation of the numbers 1, 2, . . . , n and Pq′ denotes
the set of numbers obtained by applying the permutation P to the su�xes of
q′1, q

′
2, . . . , q

′
n.

Let (q′1q
′
2 . . . q

′
n|) or (q′|) be the wave function representing any state. It will

satisfy the wave equation

i~
∂

∂t
(q′|) =

∫
(q′|H|q′′) d q′′ (q′′|). (2)

If we apply any permutation P to the variables q′ in (q′|) we shall obtain a function
(Pq′|) satisfying

i~
∂

∂t
(Pq′|) =

∫
(Pq′|H|q′′) d q′′ (q′′|)

=

∫
(Pq′|H|Pq′′) d q′′ (Pq′′|),

since we can apply any permutation to the variables of integration q′′ in
the intergrand without changing the value of the integral. With the help of (1)
this becomes

i~
∂

∂t
(Pq′|) =

∫
(q′|H|q′′) d q′′ (Pq′′|), (3)

which shows that (Pq′|) is a solution of the wave equation (2). Hence if we apply

any permutation to the variables in a solution of the wave equation we obtain

another solution.

Suppose we take a state whose representative (q′|) at some particular time t is
a symmetrical function of all the q′'s, so that

(q′|) = (Pq′|) (4)
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for any P . The right-hand sides of (2) and (3) are now equal, so that

∂

∂t
(q′|) =

∂

∂t
(Pq′|)

This equation is the time derivative of (4) and shows that if (4) holds at one
particular time it holds also at a slightly later time, and thus by induction it holds
at all times. Thus if a wave function is initially symmetrical it always remains

symmetrical.
Similarly we may take a state whose representative (q′|) at some particular

time is antisymmetrical, i.e. (q′1q
′
2 . . . q

′
n|) changes sign with interchange of any

pair of q′'s. We shall then have

(q′|) = ±(Pq′|), (5)

the + or − sign being taken according to whether the permutation P is even or odd
(i.e. according to whether P can be built up from an even or an odd number of
simple interchanges). The same argument as before now shows that if a wave

function is initially antisymmetrical it always remains antisymmetrical.
Let us make a canonical transformation to a Q-representation which, like the

original q-representation, treats all the particles on the same footing. This means
that the Q's consist of corresponding sets of observables Q1, Q2, . . . , Qn describing
the �rst, second, . . . , nth particle respectively and that the phases are chosen in
the same way for each of the particles. The transformation function will now be
of the form

(Q′1Q
′
2 . . . Q

′
n|q′1q′2 . . . q′n) = (Q′1|q′1)(Q′2|q′2) . . . (Q′n|q′n), (6)

in which each factor (Q′r|q′r) is the same function of its variables Q′r & q′r.
This condition gives, if we denote (Q′1Q

′
2 . . . Q

′
n|q′1q′2 . . . q′n) by (Q′|q′) for brevity,

(Q′|q′) = (PQ′|Pq′), (7)

for an arbitrary permutation P . The new representative of any state is given by

(Q′|) =

∫
(Q′|q′) d q′ (q′|). (8)

From this equation we can deduce that

(PQ′|) =

∫
(PQ′|q′) d q′ (q′|)

=

∫
(PQ′|Pq′) d q′ (Pq′|)

=

∫
(Q′|q′) d q′ (Pq′|) (9)
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with the help of (7). Now if (q′|) is symmetrical, so that equation (4) holds,
the right-hand sides of (8) and (9) are equal. We then have (Q′|) = (PQ′|),
so that (Q′|) is also symmetrical. Similarly if (q′|) is antisymmetrical, (Q′|)
is also antisymmetrical. Thus the property of the representative of a state

of being symmetrical or antisymmetrical remains invariant under a canonical

transformation. This invariance, together with the fact proved above that a wave
function if initially symmetrical or antisymmetrical always remains so, shows that
the property of being symmetrical or antisymmetrical is a property of the states
themselves and not merely a property of their representatives. Thus we can talk
about symmetrical and antisymmetrical states.

The invariance and permanence of the symmetry properties of the states means
that for some particular kind of particle it is quite possible for only symmetrical
or only antisymmetrical states to occur in nature. Whether this is the case
cannot he decided by any general theoretical considerations, but can be settled
only by reference to special experimentally determined facts about the particles
in question. For photons one can settle the question by making use of Planck's
radiation law. Only when one assumes the symmetrical states for photons does
one get a statistical mechanics leading to Planck's law for radiation in statistical
equilibrium. This statistical mechanics is known as the Einstein-Bose statistics,
as it was �rst introduced by Satyendra Nath Bose and Albert Einstein before the
arrival of the modern quantum mechanics.

For electrons we use the fact that, if we make the approximation of regarding
the electrons in an atom as each moving in its own `orbit' (i.e. as being each
describable by its own wave function involving only its own variables), then no
two electrons will ever be in the same orbit. This fact, which is known as
Pauli's exclusion principle, may be inferred from general experimental evidence
on atomic structure. Let us see how to �t it in with the theory. If the wave
functions representing the di�erent orbits are

(q′|α1), (q
′|α2), . . . , (q

′|αn)

a wave function representing the whole atom will be given by the product

(q′1|α1)(q
′
2|α2) . . . (q

′
n|αn) = (q′|α) (10)

say, for brevity. Other wave functions representing the same distribution of
electrons over the various orbits may be obtained by applying any permutation
to the α's in (10). There will be altogether n! such wave functions, the general one
being (q′|Pα). Any linear combination of these wave functions will also represent
the same electron distribution. One such linear combination is the sum∑

P

(q′|Pα), (11)
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which is symmetrical between all the q′'s. Another is∑
P

±(q′|Pα), (12)

the+or− sign being taken according to whether P is an even or odd permutation,
and this one is antisymmetrical. The antisymmetrical wave function (12)
has the property that it vanishes identically if two of the α's are equal.
Hence if we assume that for electrons only antisymmetrical states occur, we shall
get the result that there are no states with two electrons in the same orbit, which is
just Pauli's exclusion principle. This assumption is the only one we can make which
will lead to Pauli's exclusion principle.

In this way we can see that for photons we must take the symmetrical
states and for electrons the antisymmetrical states. These are special cases
of an empirical rule, which appears to hold without exception, according
to which only the symmetrical or only the antisymmetrical states occur
according to whether the particles in question carry a charge of an even or
an odd multiple of the electronic charge. When only the symmetrical or only
the antisymmetrical states are allowed for a particular kind of particle, the theory
can no longer make a distinction between two states which di�er only through
a permutation of the particles, so that the di�culties mentioned at the beginning
of this section disappear.

63. Permutations as Observables

Let us now build up a general theory for a system containing n similar particles
when states with any kind of symmetry properties are allowed, i.e. when there
is no restriction to only symmetrical or only antisymmetrical states. The general
state now will not be symmetrical or antisymmetrical, nor will it be expressible
linearly in terms of symmetrical and antisymmetrical states when n > 2.

If P denotes any permutation and ψ any ψ-symbol, we can give a meaning
to Pψ, the ψ-symbol obtained by operating on ψ with P . We de�ne Pψ to be
the ψ-symbol whose representative is (Pq′|), obtained by applying the permutation
P to the representative (q′|) of ψ. This Pψ is independent of the representation
used for de�ning it, as follows from equation (9). Further, the operation by which
Pψ is obtained from ψ is a linear one. Hence we can regard Pψ as the product of
an observable P with ψ, i.e. we can regard the permutation P as an observable.

There are n! permutations, each of which can be regarded as an observable.
One of them, P1 say, is the identical permutation, which is equal to unity.
If ψ denotes a symmetrical state, we have

Pψ = ψ (13)
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for any P , and hence a symmetrical ψ is an eigen-ψ of every permutation belonging
to the eigenvalue unity. Similarly an antisymmetrical ψ is an eigen-ψ of every
permutation belonging to the eigenvalue ±1 according to whether the permutation
is even or odd. The product of any two permutations is a third permutation and
hence any function of the permutations is reducible to a linear function of them.
Any permutation P has a reciprocal P−1 satisfying PP−1 = P−1P = P1 = 1.

A permutation P , like any other observable, can be represented by a matrix.
Its q-representative (q′|P |q′′) will satisfy∫

(q′|P |q′′) d q′′ (q′′|) = (Pq′|)

and hence (q′|P |q′′) = δ(Pq′ − q′′) (14)

= δ(q′ − P−1q′′). (15)

The δ function in (14) or (15) denotes the product of n factors of the type
δ({Pq′}r − q′′r ) or δ(q′r − {P−1q′′}r) respectively. The conjugate complex of P
is given by

(q′|P |q′′) = (q′′|P |q′) = δ(q′′ − P−1q′)
= (q′|P−1|q′′)

from (15) and (14), so that P = P−1. (16)

Thus a permutation is not in general a real observable, its conjugate complex being
equal to its reciprocal.

Any permutation of the numbers 1, 2, 3, . . . , n may be expressed in the cyclic
notation, e.g. with n = 8

Pa = (143)(27)(58)(6), (17)

in which each number is to be replaced by the succeeding number in a bracket,
unless it is the last in a bracket, when it is to be replaced by the �rst in
that bracket. Thus Pa changes the numbers 12345678 into 47138625. The type of
any permutation is speci�ed by the partition of the number n which is provided by
the number of numbers in each of the brackets. Thus the type of Pa is speci�ed by
the partition 8 = 3+2+2+1. Permutations of the same type, i.e. corresponding to
the same partition, we shall call similar. Thus, for example, P , in (17) is similar to

Pa = (871)(35)(46)(2). (18)

The whole of the n! possible permutations may be divided into sets of similar
permutations, each such set being called a class. The permutation P1 = 1 forms
a class by itself. Any permutation is similar to its reciprocal.

When two permutations Pa and Pb are similar, either of them Pb may be
obtained by making a certain permutation P in the other Pa. Thus, in our
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example (17), (18) we can take P to be the permutation that changes 14327586
into 87135462, i.e. the permutation

P = (18623)(475).

We then have the algebraic relation between Pa and Pb

Pb = PPaP
−1. (19)

To verify this, we observe that the product Paψ of Pa with any ψ is changed into
Pbψ if one applies the permutation P to the Pa in the product but not to the ψ.
If we multiply the product by P on the left, we are applying this permutation to
the whole ψ-symbol Paψ and thus to both the Pa and the ψ, so that we must insert
another factor P−1 between the Pa and the ψ, giving us PPaP

−1 to equate to Pbψ.
An alternative proof consists in noting that when the permutation P is applied to
the representative δ(Paq

′− q′′) of Pa, it gives δ(PPaq′−Pq′′) or δ(PPaP−1q′− q′′),
which is just the representative of PPaP

−1.
Equation (19) is the general formula showing when two permutations Pa and

Pb are similar. Of course P is not uniquely determined when Pa and Pb are given,
but the existence of any P satisfying (19) is su�cient to show that Pa and Pb are
similar.

64. Permutations as Constants of the Motion

A permutation P may be considered as an observable at each instant of time and
may therefore be considered as a dynamical variable. Let us see how P varies
with the time. The fact that the Hamiltonian is symmetrical leads at once to
the equation

PH = HP, (20)

as may be veri�ed by a similar argument to that used for equation (19),
or alternatively by a direct application of the matrix representatives.
Thus from (14)

(q′|PH|q′′) =

∫
δ(Pq′ − q′′′) d q′′′ (q′′′|H|q′′) = (Pq′|H|q′′)

and from (15)

(q′|HP |q′′) =

∫
(q′|H|q′′′) d q′′′ δ(q′′′ − P−1q′′) = (q′|H|P−1q′′),

and the two right-hand sides are now equal from (1). Equation (20) shows that
each permutation is a constant of the motion. The P 's are still constants when
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arbitrary perturbations are applied to the system, provided the perturbing energy
to be added to the Hamiltonian is symmetrical. Thus the constancy of the P 's
is absolute.

In dealing with any system in quantum mechanics, when we have found
a constant of the motion α, we know that if for any state, α initially has
the numerical value α′, then it always has this value, so that we can assign di�erent
numbers α′ to the di�erent states and so obtain a classi�cation of the states.
The procedure is not so straightforward, however, when we have several constants
of the motion α which do not commute (as is the case with our permutations P ),
since we cannot assign numerical values for all the α's simultaneously to any state.
Let us �rst take the case of a system whose Hamiltonian does not involve the time
explicitly. The existence of constants of the motion α which do not commute is then
a sign that the system is degenerate. We must now look for a function β of the α's
which has one and the same numerical value β′ for all those states belonging to one
energy-level H ′, so that we can use β for classifying the energy-levels of the system.
We can express the condition for β by saying that it must be a function of H,
according to the general de�nition of a function of an observable, so that β must
commute with every observable that commutes with H, i.e. with every constant of
the motion. If the α's are the only constants of the motion, or if they are a set that
commute with all other independent constants of the motion, our problem reduces
to �nding a function β of the α's which commutes with all the α's. We can then
assign a numerical value β′ for β to each energy-level of the system. If we ean �nd
several such functions β, they must all commute with each other, so that we can
give them all numerical values simultaneously and obtain a complete classi�cation
of the energy-levels. When the Hamiltonian involves the time explicitly one
cannot talk about energy-levels, but the β's will still give a useful classi�cation for
the states.

We follow this method in dealing with our permutations P . We must �nd
a function χ of the P 's such that PχP−1 = χ for every P . It is evident that
a possible χ is

∑
Pc, the sum of all the permutations in a certain class c,

i.e. the sum of a set of similar permutations, since
∑
PPcP

−1 must consist of
the same permutations summed in a di�erent order. There will be one such χ
for each class. Further, there can be no other independent χ, since an arbitrary
function of the P 's can be expressed as a linear function of them with numerical
coe�cients, and it will not then commute with every P unless the coe�cients of
similar P 's are always the same. We thus obtain all the χ's that can be used for
classifying the states. It is convenient to de�ne each χ as an average instead of
a sum, thus

χc = n−1c
∑

Pc,
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where nc is the number of P 's in the class c. An alternative expression for χc is

χc = n!−1
∑
P

PPcP
−1, (21)

the summation being extended over all the n! permutations P . For each
permutation P there is one χ, χ(P ) say, equal to the average of all permutations
similar to P . One of the χ's is χ(P1) = 1.

The constants of the motion χ1, χ2, . . . , χm obtained in this way will each have
a de�nite numerical value for every stationary state of the system, in the case
when the Hamiltonian does not involve the time explicitly, and also in the general
case can be used for classifying the states, there being one set of states for every
permissible set of numerical values χ′1, χ

′
2, . . . , χ

′
m for the χ's. Since the χ's

are absolute constants of the motion, these sets of states will be exclusive,
i.e. transitions will never take place from a state in one set to a state in another.

The permissible sets of values χ′ that one can give to the χ's are limited by
the fact that there exist algebraic relations between the χ's. The product of any
two χ's, χpχq, is of course expressible as a linear function of the P 's, and since
it commutes with every P it must be expressible as a linear function of the χ's,
thus

χpχq = a1χ1 + a2χ2 + · · ·+ amχm. (22)

where the a's are numbers. Any numerical values χ′ that one gives to the χ's must
be eigenvalues of the χ's and must satisfy these same algebraic equations. For every
solution χ′ of these equations there is one exclusive set of states. One solution
is evidently χ′p = 1 for every χp, and this gives the set of symmetrical states
satisfying (13). A second obvious solution is χ′p = ±1, the + or − sign being taken
according to whether the permutations in the class p are even or odd, and this gives
the set of antisymmetrical states. The other solutions may be worked out in any
special case by ordinary algebraic methods, as the coe�cients a in (22) may be
obtained directly by a consideration of the types of permutation to which the χ's
concerned refer. Any solution is, apart from a certain factor, what is called in group
theory a character of the group of permutations. The χ's are all real observables,
since each P and its conjugate complex P−1 are similar and will occur added
together in the de�nition of any χ, so that the χ′'s must be all real numbers.

The number of possible solutions of the equations (22) may easily be
determined, since it must equal the number of di�erent eigenvalues of an arbitrary
function B of the χ's. We can express B as a linear function of the χ's with
the help of equations (22); thus

B = b1χ1 + b2χ2 + · · ·+ bmχm. (23)

Similarly we can express each of the quantities B2, B3, . . . , Bm as a linear function
of the χ's. From these m equations, together with the equation χ(P1) = 1, we can
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eliminate them unknowns χ1, χ2, . . . , χm, obtaining as result an algebraic equation
of degree m for B,

Bm + c1B
m−1 + c2B

m−2 + · · ·+ cm = 0.

The m solutions of this equation give the m possible eigenvalues for B,
each of which will, according to (23), be a linear function of b1, b2, . . . , bm, whose
coe�cients are a permissible set of values χ′1, χ

′
2, . . . , χ

′
m. These sets of values

χ′ thus obtained must be all di�erent, since if there were fewer than m di�erent
permissible sets of values χ′ for the χ's there would exist a linear function of
the χ's every one of whose eigenvalues vanishes, which would mean that the linear
function itself vanishes and the χ's are not linearly independent. Thus the number
of permissible sets of numerical values for the χ's is just equal to m, which is
the number of classes of permutations or the number of partitions of n. This
number is therefore the number of exclusive sets of states.

The properties of the P 's which are not properties of the χ's will only describe
the degeneracy of the states, in the case of a system whose Hamiltonian does not
involve the time explicitly. If ψ denotes any stationary state, f(P )ψ, where f(P )
is any function of the permutations, will denote another stationary state belonging
to the same energy-level, except when it vanishes identically. By expanding
f(P )ψ in terms of a complete set of independent stationary states belonging to
this energy-level, we get a representation of f(P ) and thus of each P . In this way
we see that, if we obtain a matrix representation of all the P 's consistent with
each of the χ's being a certain number χ′, then the number of rows and columns
of the matrices will be the degree of degeneracy of the states in the exclusive
set χ′, i.e. the number of independent states belonging to each energy-level.
This degeneracy is an essential one and cannot be removed by any perturbation
that is symmetrical between all the similar particles. The states ψ and f(P )ψ are
observationally indistinguishable, since any observation that can actually be made
must consist in measuring an observable that is symmetrical between the similar
particles and therefore commutes with f(P ). This remark applies also when
the Hamiltonian involves the time explicitly.

65. Determination of Energy-levels

Let us apply the perturbation method of �51 and make a �rst-order calculation of
the energy-levels in the case when the Hamiltonian does not involve the time
explicitly. We suppose that for our unperturbed states each of the similar
particles has its own `orbit', represented by a wave function (q′|α) involving
only the co-ordinates q′ of this one particle. We shall have altogether n orbits,
one for each particle, which we assume for the present to be all di�erent,
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and label α1, α2, . . . , αn. The wave function representing an unperturbed state
of the whole system will then be the product (10). If we apply an arbitrary
permutation Pa to the α's, we shall obtain another wave function

(q′1|αr)(q′2|αs) . . . (q′n|αt) = (q′|Paα) (24)

representing another unperturbed state with the same energy. There are thus
altogether n! unperturbed states with this energy, if we assume there are no other
causes of degeneracy. According to the method of �51 when the unperturbed
system is degenerate, we must consider those elements of the matrix representing
the perturbing energy V that refer to two states with the same energy, i.e. those of
the type (Paα|V |Pbα) where Pa and Pb are two permutations of the α's. These will
form a matrix with n! rows and columns, whose eigenvalues are the �rst-order
corrections in the energy-levels.

It is necessary in the present discussion to distinguish between the two kinds of
permutations, those of the q's and those of the α's. The essential di�erence between
them can perhaps be seen most clearly in the following way. Let us consider
a permutation in the general case, say that consisting of the interchange of 2
and 3. This may be interpreted either as the interchange of the objects 2 and 3
or as the interchange of the objects in the places 2 and 3, these two operations
producing in general quite di�erent results. The �rst of these interpretations
is the one we have been using up to the present, the objects concerned being
the q's in the representative of a state. A permutation with this interpretation can
be applicd to an arbitrary function of the q's. A permutation with the second
interpretation has a meaning, however, when applied to a function of the q's
only if each of the q's has a de�nite speci�able place in the function. This is
not the case for a general function of the q's, but it is the case for any of
the n! functions of the type (24), the place of each q being speci�ed by the α
with which it is bracketed. Any permutation applied to the q's in given places
now produces the same result as the reciprocal permutation applied to the α's.
A permutation of the q's (i.e. one with the �rst interpretation), since it can be
applied to any function of the q's, i.e. to the representative of any ψ-symbol, may be
regarded as an ordinary observable. On the other hand, a permutation of places
or of the α's can be considered as an observable only in a very restricted sense,
since it has a meaning only when multiplied into a ψ-symbol whose representative
is one of the n! wave functions (24) or some linear combination of them. We denote
such a permutation of the α's, considered as an observable in this restricted sense,
by the symbol Pα.

We can form algebraic functions of the observables Pα which will be other
observables in the same restricted sense. In particular we can form χ(Pα

a ),
the average of all Pα's similar to Pα

a . This must equal χ(Pa), the average of
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the similar permutations of the q's, since the total set of all permutations of
a given type must evidently be the same whether the permutations are applied
to the objects q or to the places α.

If we set up arbitrarily a one-one correspondence between the q's and the α's,
as is done automatically when we label both the q's and the α's by the numbers
1, 2, 3, . . . , n, as in (10), then, if we have any permutation of the q's, we can give
a meaning to this same permutation of the α's. This meaning is such that

(q|α) = (Pq|Pα).

In this equation we can apply a permutation Pα to the α's on both sides, which will
give us

(q|Paα) = (Pq|PaPα), (25)

an equation which shows us the connexion between permutations of the q's and
those of the α's when applied to the wave function (24).

The matrix (Paα|V |Pbα), which we must now study, may be obtained from
the matrix (q′|V |q′′) representing V by a canonical transformation, in which
the transformation functions are just (q′|Paα), the wave function (24), and its
conjugate complex (Paα|q′), provided these functions are properly normalized.
Thus

(Paα|V |Pbα) =

∫∫
(Paα|q′) d q′ (q′|V |q′′) d q′′ (q′′|Pbα). (26)

Again, for arbitrary P,

(PaPα|V |PbPα) =

∫∫
(PaPα|q′) d q′ (q′|V |q′′) d q′′ (q′′|PbPα)

=

∫∫
(PaPα|Pq′) d q′ (Pq′|V |Pq′′) d q′′ (Pq′′|PbPα),

when we apply the permutation P to the variables of integration q′ and q′′. With
the help of (25), this reduces to

(PaPα|V |PbPα) =

∫∫
(Paα|q′) d q′ (Pq′|V |Pq′′) d q′′ (q′′|Pbα). (27)

Now since V is symmetrical between all the particles, we must have

(q′|V |q′′) = (Pq′|V |Pq′′),

like (1), and hence, comparing (26) and (27), we obtain

(Paα|V |Pbα) = (PaPα|V |PbPα). (28)
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Let (Pα|V |α) = VP for brevity. Then, taking P = P−1b in (28), we obtain

(Paα|V |Pbα) = (PaP
−1
b |V |α) = VPaP−1

b
.

Thus the general matrix element (Paα|V |Pbα) depends only on the ratio PaP
−1
b ,

and of the total of (n!)2 matrix elements there are only n! di�erent ones.
The coe�cient of any VP in this matrix will be a matrix, each of whose elements
is 0 or 1, the 1 occurring when

(Paα|V |Pbα) = VP ,

i.e. when PaP
−1
b = P. But this matrix, multiplied into any wave function (q|Pbα),

gives the result (q|Paα) with PaP
−1
b = P , i.e. it gives the result (q|PPbα), so that

it is precisely the matrix representing the observable Pα or the permutation P
applied to the α's. Thus the whole matrix (Paα|V |Pbα) is equal to the matrix
representing

∑
P VPP

α, where the summation is over all the n! permutations P ,
and we can put

V =
∑
P

VPP
α. (29)

This formula shows that the perturbing energy V is equal to a linear function
of the permutation observables Pα with numerical coe�cients VP . It is, of course,
only an approximate formula, as it holds only with neglect of those matrix
elements of V that refer to two di�erent energy-levels of the unperturbed system.
It can, however, be used for the calculation of the energy-levels in the �rst
approximation, and is very convenient for this purpose as the expression

∑
P VPP

α

is easily handled. This expression, it should be remembered, is an observable only
in the restricted sense mentioned above, but this sense is su�ciently general for
equation (29) to be valid with neglect of those matrix elements of V referring to
two di�erent energy-levels of the unperturbed system.

As an example of an application of (29) we shall determine the average energy
of all those states arising from a given state of the unperturbed system that belong
to one exclusive set. This requires us to calculate the average eigenvalue of V when
the χ's have speci�ed numerical values χ′. Now the average eigenvalue of Pα

a cquals
that of PαPα

a P
α−1 for arbitrary Pα and thus equals that of n!−1

∑
Pα P

αPα
a P

α−1,
which is χ′(Pα

a ) or χ′(Pa). Hence the average eigenvalue of V is
∑

P VPχ
′(P ).

A similar method could be used for calculating the average eigenvalue of any
function of V, it being only necessary to replace each Pα by χ(P ) to perform
the averaging.

The number of energy-levels in an exclusive set χ = χ′ that arise from a given
state of the unperturbed system is equal to the number of eigenvalues of (29) that
are consistent with the equations χ = χ′. This number is the number of rows
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and columns in a representation of the P 's in which each χ = χ′, which number,
from the result at the end of the preceding section, is just the degree of degeneracy
of the states in this set.

The modi�cations required in the theory when the orbits α1, α2, . . . , αn
of the undisturbed system are not all di�erent may easily be made.
Suppose, for example, that α1 and α2 are the same. Then the permutation Pα

12

that causes an interchange of α1 and α2 must equal unity. Only functions of
the Pα's that commute with Pα

12 now have a meaning. This, however, is su�cient
for us to be able to follow out the same sort of argument as before, and obtain
a result of the same form (29). The term in the summation in (29) that involves
the permutation Pα

12 now does not occur, since it could be added on to the term
involving the identical permutation Pα

1 . For the remaining terms, any two terms
Pα
a and Pα

b must have the same coe�cient if the permutations Pα
a and Pα

b can
be obtained from one another by the interchange of α1 and α2. This results in∑

P VPP
α commuting with Pα

12 and thus having a meaning. The condition Pα
12 = 1

will impose restrictions on the possible numerical values χ′ that the χ's can have
and will reduce the number of characters.

66. Application to Electrons

Let us now consider the case when the similar particles are electrons. This requires,
according to Pauli's exclusion principle discussed in �62, that we take into account
only the antisymmetrical states. It is now necessary to make explicit reference
to the spin properties of the electrons. The e�ect of the spin on the motion of
an electron in an electromagnetic �eld is not very great. There will be additional
forces on the electron due to its magnetic moment, requiring additional terms in
the Hamiltonian. The spin angular momentum will not have any direct action
on the motion, but it will come into play when there are forces tending to rotate
the magnetic moment, since the magnetic moment and angular momentum are
constrained to be always in the same direction. These e�ects are all small,
however, of the same order of magnitude as that of the relativity variation of
mass with velocity, so there would be no point in taking them into account in
a non-relativity theory. The importance of the spin lies not in these small e�ects
on the motion of the electron, but in the fact that it gives two internal states to
the electron, corresponding to the two possible values of the spin component in any
assigned direction, which causes a doubling in the number of independent states of
an electron moving in a given �eld. This fact has far-reaching consequences when
combined with Pauli's exclusion principle.

Let us take a representation in which the diagonal observables qr describing the
r-th electron are its three Cartesian co-ordinates x, y, z, and the z-component σz
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of its spin vector σ, which was introduced in �43. The representative of a state
will now be

(x1, x2, . . . , xn, σ1, σ2, . . . , σn|) = (xσ|), (30)

the single variable x being written instead of x, y, z and the su�x z being dropped
from σz's that occur in representatives. The exclusion principle requires that (30)
shall be antisymmetrical in the x's and σ's together, i.e. if any permutation is
applied to the x's and also to the σ's, (30) must remain unchanged or change sign
according to whether the permutation is even or odd. In symbols

(x, σ|) = ±(Px, Pσ|) (31)

for any permutation P . Thus even if we neglect the spin forces in the Hamiltonian,

we must take the spin variables into account in order to determine what states are

allowed by the exclusion principle.
If the theory of the three preceding sections is applied directly to the case

of electrons, it will not give anything of interest, since all the allowed states
are eigenstates of any permutation belonging to the eigenvalue ±1. We may,
however, consider permutations P which operate on the x-variables alone in
the representative of a state, and apply our theory to these. Such permutations
may also be considered as observables. Further, they are also constants of
the motion when we neglect the terms in the Hamiltonian that arise from
the spin forces, which neglect results in the Hamiltonian not involving the spin
observables σ. Hence with these permutations P we can again introduce the χ's,
equal to the average of all of the P 's in each class, and assert that for any
permissible set of numerical values χ′ for the χ's there will be one exclusive set
of states. Thus there exist these exclusive sets of states for systems containing
many electrons even when we restrict ourselves to a consideration of only those
states that satisfy Pauli's principle. The exclusiveness of the sets of states is now,
of course, only approximate, since the χ's are constants only so long as we neglect
the spin forces. There will actually be a small probability for a transition from
a state in one set to a state in another.

From (31) we obtain
PP σ = ±1, (32)

where P denotes any permutation which operates on the x-variables and P σ

the same permutation operating on the σ-variables in the representative of
a state. There is thus a simple connexion between the P 's and P σ's, which
means that instead of studying the observables P we can get all the results
we want, e.g. the characters χ′, by studying the observables P σ. The P σ's are
much easier to study on account of the fact that the σ variables in the wave
function have domains consisting each of only the two points 1 and −1, which are
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the two eigenvalues of each σz. This fact results in there being fewer characters χ′

for the group of permutations of the σ-variables than for the group of general
permutations, since it prevents a function of the variables σ1, σ2, . . . , σn from
being antisymmetrical in more than two of them.

The study of the observables P σ is made specially easy by the fact that we can
express them as algebraic functions of the observables σ. Consider the quantity

O12 = ½{1 + (σ1,σ2)}.
With the help of equations (42) of �43 we �nd readily that

(σ1,σ2)
2 = (σ1xσ2x + σ1yσ2y + σ1zσ2z)

2 = 3− 2(σ1,σ2), (33)

and hence that O12
2 = ¼{1 + 2(σ1,σ2) + (σ1,σ2)

2} = 1. (34)

Again, we �nd O12σ1x = ½{σ1x + σ2x − iσ1zσ2y + iσ1yσ2z}
σ2xO12 = ½{σ2x + σ1x + iσ1yσ2z − iσ1zσ2y}

and hence O12σ1x = σ2xO12.

Similar relations hold for σ1y and σ1z so that we have

O12σ1 = σ2O12

or O12σ1O
−1
12 = σ2.

From this we can obtain with the help of (34)

O12σ2O
−1
12 = σ1.

These commutability relations for O12 with σ1 and σ2 are precisely the same as
those for P σ

12, the permutation consisting of the interchange of the spin variables
of electrons 1 and 2. Thus we can put

O12 = cP σ
12,

where c is a number. Equation (34) shows that c = ±1. To determine which
of these values for c is the correct one, we observe that the eigenvalues of P σ

12

are 1, 1, 1 & −1, corresponding to the fact that there exist three independent
symmetrical and one antisymmetrical function of the two variables σ1z, σ2z,
namely, with the notation of �43, the three symmetrical functions fα(σ1)fα(σ2),
fβ(σ1)fβ(σ2), fα(σ1)fβ(σ2) + fβ(σ1)fα(σ2), and the one antisymmetrical function
fα(σ1)fβ(σ2) − fβ(σ1)fα(σ2). Thus the mean of the eigenvalues of P σ

12 is ½.
Now the mean of the eigenvalues of (σ1,σ2) is evidently zero and hence the mean
of the eigenvalues of O12 is ½. Thus we must have c = +1, and so we can put

P σ
12 = ½{1 + (σ1,σ2)}.

In this way any permutation P σ consisting simply of an interchange can be
expressed as an algebraic function of the σ's. Any other permutation P σ can
be expressed as a product of interchanges and can therefore also be expressed
as a function of the σ's. With the help of (32) we can now express the P 's as
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algebraic functions of the σ's and eliminate the P σ's from the discussion. We have,
since the−sign must be taken in (32) when the permutations are interchanges and
since the square of an interchange is unity,

P12 = −½{1 + (σ1,σ2)}. (35)

The formula (35) may conveniently be used for the evaluation of
the characters χ′ which de�ne the exclusive sets of states. We have, for example,
for the permutations consisting of interchanges

χ12 = χ(P12) = −½

{
1 +

2

n(n− 1)

∑
r<t

(σr,σt)

}
.

If we introduce the observable s to describe the magnitude of the total spin angular
momentum, ½

∑
r σr in units of ~, through the formula

s2 − ¼ =

(
½
∑
r

σr, ½
∑
t

σt

)
,

analogous to equation (12) of Chapter VIII, we have

2
∑
r<t

(σr,σt) =

(∑
r

σr,
∑
t

σt

)
−
∑
r

(σr,σt)

= 4s2 − 1− 3n.

Hence χ12 = −½
{

1− 4s2 − 1− 3n

n(n− 1)

}
= −n(n− 4) + 4s2 − 1

2n(n− 1)
. (36)

Thus χ12 is expressible as a function of the observable s and of n the number of
electrons. Any of the other χ's could be evaluated on similar lines and would have
to be a function of s and n only, since there are no other symmetrical functions
of all the σ observables which could be involved. There is therefore one set of
numerical values χ′ for the χ's, and thus one exclusive set of states, for each
eigenvalue s′ of s. The eigenvalues of s are

1
2
n+ 1

2
, 1

2
n− 1

2
, 1

2
n− 3

2
, . . .

the series terminating with ½ or 1.
We see in this way that each of the stationary states of a system with several

electrons is an eigenstate of s, the magnitude in units of ~, of the total spin angular
momentum ½

∑
r σr, belonging to a de�nite eigenvalue s′. For any given s′ there

will be 2s′ possible values for a component of the total spin vector in any direction
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and these will correspond to 2s′ independent stationary states with the same
energy. When we do not neglect the forces due to the spin magnetic moments
these 2s′ states will in general be split up into 2s′ states with slightly di�erent
energies, and will thus form a multiplet of multiplicity 2s′. Transitions in which
s′ changes, i.e. transitions from one multiplicity to another, cannot occur when
the spin forces are neglected and will have only a small probability of occurrence
when the spin forces are not neglected.

We can determine the energy-levels of a system with several electrons to the �rst
approximation by using formula (29). If we consider only the Coulomb forces
between the electrons, then the interaction energy V will consist of a sum of
parts each referring to only two electrons, which will result in all the matrix
elements VP vanishing except those for which P is the identical permutation or is
simply an interchange of two electrons. Thus (29) will reduce to

V = V1 +
∑
r<s

VrsP
α
rs, (37)

Vrs being the matrix element referring to the interchange of orbits r and s.
Since the Pα's have the same properties as the P 's, any function of the Pα's
will have the same eigenvalues as the corresponding function of the P 's, so that
the right-hand side of (37) will have the same eigenvalues as

V1 +
∑
r<s

VrsPrs

or V1 − ½
∑
r<s

Vrs{1 + (σr,σs)} (38)

from (35). The eigenvalues of (38) will give the �rst-order corrections
in the energy-levels. The form of (38) shows that a model which assumes a coupling
energy between the spins of the various electrons, of magnitude −½Vrs(σr,σs) for
the electrons in the r and s orbits, would meet with a fair amount of success.
This coupling energy is much greater than that of the spin magnetic moments.
Such models of the atom were in use before the justi�cation by quantum mechanics
was obtained.

If two of the orbits of our unperturbed system are the same, say the orbits α1

and α2 are the same, we must take only those eigenvalues of (37) that are consistent
with Pα

12 = 1, or those eigenvalues of (38) consistent with P12 = 1 or Pα
12 = −1.

This means we must take only those eigenvalues of (38) belonging to eigenfunctions
that are simultaneously eigenfunctions of P σ

12 belonging to the eigenvalue −1,
i.e. eigenfunctions that are antisymmetrical in σ1 and σ2. Thus we may say that
the two electrons in the orbits α1 and α2 have their spins antiparallel. The case of
more than two orbits the same cannot occur with electrons.
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67. Theory of Einstein-Bose Assemblies

In Chapter X a theory was given of the scattering, absorption and emission
of a particle by an atomic system. The interaction of the particle and atomic
system was assumed to be describable by an interaction energy V appearing in
the Hamiltonian, which interaction energy had to be small but was otherwise
arbitrary. If we could determine the energy of interaction between a photon and
an atom or molecule, we could apply the methods of Chapter X immediately to
the case when the incident particle is a photon. In this way we could obtain
a theory of the interaction of light with an atomic system. We cannot determine
this energy of interaction directly from analogy with the classical theory, in the way
we obtained the Hamiltonians for most of the systems dealt with up to the present,
since the phenomenon of the interaction of a photon with an atom has no analogue
in the classical theory. We must proceed in a more indirect way. We know that
the interaction of an atom with a �eld of radiation can be described approximately
by classical electrodynamics when the �eld of radiation consists of a large number
of photons. Our method is therefore to assume an arbitrary interaction energy V
between a single photon and the atom and then in terms of V to investigate
the interaction of a large number of photons with the atom. By comparing
this interaction with that given by classical electrodynamics we can then obtain V.

Our problem now is thus to deal in general terms with the interaction of
a large number of photons with an atom. This problem, it is important to observe,
is a generalization of that of Chapter X, in spite of the fact that we then often
considered a large number of incident particles. The incident particles of Chapter X
were all independent and each had its own scatterer. In fact they were only
introduced to help us to picture one actual incident particle interacting with one
scatterer. We now have a large number of actual photons all interacting with
the same atom. Also our photons are independent of one another since, even if
there are no forces between them describable by an interaction energy, they are,
as we saw in the preceding chapter, such that only states that are symmetrical
between them occur in nature, i.e. they satisfy the Einstein-Bose statistics.

211
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Let us �rst consider the problem of an assembly of n similar systems of
any kind that satisfy the Einstein-Bose statistics and are all perturbed by some
external �eld of force. If we take a representation in which sets of observables
q1, q2, . . . , qn describing the �rst, second,. . . last system respectively, are diagonal,
the representative (q′1q

′
2 . . . q

′
n|) of any state must be symmetrical in the variables

q′1, q
′
2, . . . , q

′
n. Suppose the eigenvalues of any of the q's, qr say, are q(1), q(2),

q(3), . . . , which we assume for de�niteness to be discrete. These eigenvalues must
be the same for each of the n systems, i.e. they must be independent of r.
(They will each be in general a set of numbers, consisting of an eigenvalue of
each of the set of commuting observables qr.) If we now have any symmetrical

function of the variables q′1, q
′
2, . . . , q

′
n, each point in the domain of this function

can be speci�ed by n′1, n
′
2, n

′
3, . . . , the numbers of q

′'s equal to q(1), q(2), q(3) . . . ,
respectively. The variables n′1, n

′
2, n

′
3, . . . will do just as well as the variables

q′1, q′2, . . . , q′n, so long as we are dealing only with symmetrical functions.
Thus the representatives of states of our assembly satisfying the Einstein-Bose
statistics may be expressed as functions of the variables n′1, n

′
2, n

′
3, . . . instead of

the variables q′1, q
′
2, . . . , q

′
n. This change is e�ectively a canonical transformation to

a new representation in which the rows and columns of the matrices are labelled by
the observables n1, n2, n3, . . . which observables are the numbers of systems with
q's equal to q(1), q(2), q(3). . . respectively, or, as we may say, the numbers of systems
in the states q(1), q(2), q(3). . . . Since the new observables n1, n2, n3, . . . are functions
of the q1, q2, . . . , qn (non-analytic functions, it is true), the transformation is of
the trivial kind consisting essentially of a relabelling of the rows and columns and
the only change to be made in the representative of a state will be that arising
from the change in the weights of the di�erent points of its domain. To determine
this change we use the condition∑

n1, n2, ...

|(n1n2 . . . |)|2 =
∑

q1, q2, ..., qn

|(q1q2 . . . qn|)|2.

from which we can infer that

|(n1n2 . . . |)|2 =
∑
|(q1q2 . . . qn|)|2, (1)

the summation in (1) being over all values of the q's such that n1 of them are
equal to q(1), n2 equal to q

(2), and so on. The number of terms in the summation
in (1) is n!/(n1!n2!n3! . . . ) and they are all equal, on account of (q1q2 . . . qn|) being
symmetrical. It is thus clear that we must take

(n1n2 . . . |) = [n!/n1!n2!n3! . . . ]
½(q1q2 . . . qn|). (2)

The question of interest now is to express the Hamiltonian of the system in
terms of the new observables n1, n2, n3, . . . . We can do this by writing down its
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representative in the q-representation and transforming to the n-representation.
Since the transformation is of an unusual kind, the most convenient way of
making it is to write down the whole Schrödinger equation and to transform that.
This Schrödinger equation is

i~
∂

∂t
(q1q2 . . . qn|) =

∑
q′1,q
′
2,...,q

′
n

(q1q2 . . . qn|H|q′1q′2 . . . q′n)(q′1q
′
2 . . . q

′
n|). (3)

The Hamiltonian H is of the form

H =
∑
r

Ur,

where Ur is the energy associated with the r-th system, consisting of its proper
energy together with its interaction energy with the external �eld of force, and is
a function of the dynamical variables of the r-th system only. The representative of
Ur in the qr-representation will be (q′r|Ur|q′′r ), which will be a matrix independent
of r, i.e. the same for each of the n systems. Its elements may also be
written (q(a)|U |q(b)) or Uab for brevity. The representative of Ur in the complete
q-representation will be

(q′1q
′
2 . . . q

′
n|Ur|q′′1q′′2 . . . q′′n) = (q′r|Ur|q′′r )δq′1q′′1 δq′2q′′2 . . . δq′r−1q

′′
r−1
δq′r+1q

′′
r+1

. . . δq′nq′′n .

This makes the Schrödinger equation (3) reduce to

i~
∂

∂t
(q1q2 . . . qn|) =

∑
r

(qr|Ur|qr)(q1q2 . . . qn|)

+
∑
q′r 6=qr

(qr|Ur|q′r)(q1q2 . . . qr−1q′rqr+1 . . . qn|)

 . (4)

the terms arising from the diagonal matrix elements of H being separated from
the non-diagonal ones for convenience later.

If we now make the transformation to the n-representation, using equation (2),
equation (4) becomes

i~
∂

∂t
(n1n2 . . . |) =

∑
r

(qr|Ur|qr)(n1n2 . . . |)

+
∑
r

∑
q′r 6=qr

[
(nq′r+1)/nqr

]½
(qr|Ur|qr)(n1n2 . . . nqr−1 . . . nq′r+1 . . . |).

(5)
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after removal of the factor [n1!n2!n3! . . . /n!]½ throughout. The sum
∑

r(qr|Ur|qr)
in (5) means a sum of terms each of the type (q(a)|U |q(a)) or Uaa, the number of
times this type occurs being the number of q's that equal q(a), which is just na.
Thus this sum is equal to

∑
a naUaa. Again, the double sum

∑
r

∑
q′r 6=qr

in (5)

consists of terms each of the type [(nb + 1)/na]
½Uab(n1n2 . . . na − 1 . . . nb + 1 . . . |)

with b 6= a. The number of times this type occurs is equal to the number of ways
of choosing r and q′r such that qr = q(a) and q′r = q(b). This is just na, the number
of ways of choosing r such that qr = q(a), since there is always just one way of
choosing q′r = q(b). Equation (5) thus reduces to

i~
∂

∂t
(n1n2 . . . |) =

∑
a

naUaa(n1n2 . . . |)

+
∑
a

∑
b6=a

n½a(nb + 1)½Uab(n1n2 . . . na−1 . . . nb+1 . . . |),

which may be written

i~
∂

∂t
(n1n2 . . . |) =

∑
a, b

n½a(nb + 1− δab)½Uab(n1n2 . . . na − 1 . . . nb + 1 . . . |) (6)

if by (n1n2 . . . na−1. . . nb+1. . . |) when b = a we understand simply (n1n2. . .na. . . |)
The eigenvalues of each of our new dynamical variables n1, n2, . . . are

the integers 0, 1, 2, 3, . . . . They are thus the same, apart from the factor ~,
as those of the action variable J in the problem of the simple harmonic
oscillator, when the arbitrary constant in this action variable is chosen as in
equation (22) of �41. Hence each na is a dynamical variable of the same nature as
the action variable of a simple harmonic oscillator and we can introduce an angle
variable wa canonically conjugate to it, or rather we can introduce eiwa and e−iwa.
Corresponding to equations (24) of �41 we shall have

eiwana = (na − 1)eiwa

e−iwana = (na + 1)e−iwa

}
(7)

Also we have that eiwa, e−iwa, and na commute with eiwb, e−iwb, and nb for b 6= a.
The new observables eiwa & e−iwa are de�ned by their matrix representatives in

a representation in which na is diagonal, like the e
iw & e−iw of �41. From the form

of these matrix representatives it follows that when e−iwa is multiplied into
a ψ-symbol whose representative is (n1n2 . . . na . . . |), the representative of
the product is

(n1n2 . . . na + 1 . . . |),
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and when eiwa is multiplied into this ψ-symbol, the representative of the product is

(n1n2 . . . na − 1 . . . |), for na > 1,
0, for na = 0.

This means that when e−iwa and eiwa are multiplied into ψ-symbols, they are
equivalent to the operations of substitution of na+1 and na−1 for na respectively,
the second substitution being understood to give the result zero for na = 0.

We can now express the operator on the right-hand side of (6) explicitly in
terms of the na and their canonical conjugates wa. It is, in fact, just∑

a, b

n½a(nb + 1− δab)½Uabeiwae−iwb

=
∑
a, b

n½ae
iwaUab(nb + 1)½e−iwb (8)

with the help of (7). This quantity (8) is our Hamiltonian expressed in
terms of the new dynamical variables na and wa. The Uab are, of course,
just numerical coe�cients.

We can easily generalize this result to apply to a more general type of
Hamiltonian, namely, that describing the perturbation of the assembly, not by
an external �eld of force, but by some other atomic system, which we shall call
for de�niteness the perturber, the reaction of the assembly on the perturber
being taken into account. We now have to introduce some more dynamical
variables, β say, to describe the perturber. Our Hamiltonian will be of the form

H = HP +
∑
r

Ur, (9)

where HP is the Hamiltonian that describes the perturber alone and Ur is
the energy associated with the r-th system of the assembly, consisting of its proper
energy plus its interaction energy with the perturber. HP will be a function
of the β's only and Ur will be a function of the variables describing the r-
th system and also the β's. We can express the new sum

∑
r Ur in terms of

the na, wa variables by the same method as before and the result will be of the same
form (8), with the di�erence that the Uab's will no longer be numbers but will be
functions of the β's. The de�nition of Uab will now be that its representative in
the ζ-representation, the ζ's being any complete set of commuting observables
taken out of the β's, is

(ζ ′|Uab|ζ ′′) = (ζ ′q(a)|U |ζ ′′q(b)), (10)

the matrix on the right being the representative of Ur in the representation in
which qr and ζ are diagonal. We shall still have Uab commuting with the n's
and w's.
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It is possible to express any function of the dynamical variables that is
symmetrical between all the particles in terms of the new variables na and wa.
The transformation may be conveniently carried out by considering the function
of the dynamical variables to be the Hamiltonian for some dynamical system and
then writing down the Schrödinger equation and transforming that. The general
case has been considered by Jordan.�

68. Discussion of Einstein-Bose Assemblies

In the preceding section we saw how the Hamiltonian describing an Einstein-Bose
assembly, or more generally any symmetrical function of the dynamical variables
of all the systems of the assembly, can be expressed in terms of variables na & wa,
analogous to the action and angle variables of a simple harmonic oscillator.
This shows that an Einstein-Bose assembly is dynamically equivalent to a set of

simple harmonic oscillators, there being one oscillator corresponding to each of

a complete set of independent states of a system of the assembly, the quantum

number of the oscillator corresponding to the number of systems in the state.
We may replace the set of simple harmonic oscillators by a train of waves,

each Fourier component of the waves being dynamically equivalent to a simple
harmonic oscillator. Thus our Einstein-Bose assembly is dynamically equivalent
to a system of waves. This provides us with a complete reconciliation between the
corpuscular and wave theories of radiation. We may regard radiation either as an
assembly of photons satisfying the Einstein-Bose statistics or as a system of waves,
the two points of view being consistent and mathematically equivalent.

We can gain a greater insight into the connexion between the systems of
an Einstein-Bose assembly by considering the limiting case when the number
of systems in each state is large, i.e. when the n's are large. We introduce
the observable*

ξa = (na + 1)½e−iwa = e−iwan½a,

whose conjugate complex is

ξa = eiwa(na + 1)½ = n½ae
iwa .

This ξa is the analogue of p− iq for the harmonic oscillator, apart from numerical
coe�cients. We have

ξaξa = na + 1

ξaξa = na (11)

�Jordan, Pascual. (1927). Über Wellen und Korpuskeln in der Quantenmechanik. Zeitschrift
für Physik, 45(11-12), pp. 766�775. doi:10.1007/bf01329554

*{in original the �rst equation omits the �nal ½ index}
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and thus ξaξa − ξaξa = 1. (12)

We can now express the Hamiltonian (8), describing the perturbation of
the assembly by an external �eld of force, in terms of the ξa's and their conjugate
complexes, the result being

H =
∑
a, b

ξaUabξb.

The equations of motion for the ξa's are

i~ξ̇a = ξaH −Hξa =
∑
b

Uabξb, (13)

with the help of (12) and the condition that ξa commutes with ξb and ξb when b 6= a.
When the na's are large, the ξa's are also large and we may neglect the unity

on the right-hand side of (12). With this approximation our observables� ξa & ξa
all commute with each other and may be counted as numbers. The equations
of motion (13) now become ordinary di�erential equations between numbers.
These equations are identical to the Schrödinger equation for a single one of
the systems perturbed by the external �eld of force, the set of numbers ξa playing
the part of the Schrödinger function (q(a)|) and Uab being the representative of
the Hamiltonian. If this Schrödinger function is normalized to n, it may be
considered to represent an assembly of n independent systems in the way discussed
in �56. The interpretation of the Schrödinger function, namely the interpretation

of
∣∣(q(a)|)∣∣2 as the number of systems in state q(a), now corresponds exactly

to the interpretation of the ξa's provided by equation (11). We thus have
the result that an assembly of a large number of similar systems is described

by the same equations, whose solutions are to be interpreted in the same way,

whether the systems are independent or satisfy the Einstein-Bose statistics.
Since an assembly of independent systems and an assembly satisfying

the Einstein-Bose statistics are two physically di�erent things, it may seem strange
that they are both to be described by the same set of equations, even though
we are restricting ourselves to the limiting case of a large number of systems
in the assembly. The solution of this paradox lies in the fact that there is
an essential di�erence between the mathematical treatments of the two assemblies,
in spite of the similarities pointed out above, as may be seen from the following
discussion. An assembly of independent systems is described as completely as
quantum mechanics allows when we are given the number of systems in each state.
The modulus of the Schrödinger function (q(a)|) is then determined for each
state q(a), but not its phase. This phase has no physical meaning. We must
average over all values of this phase if it appears in the result of any calculation.

�{the original has α as the qualifying indices}
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On the other hand, for an assembly satisfying the Einstein-Bose statistics, the ξa's
are observables and their phases as well as their moduli are of physical importance.
An Einstein-Bose assembly is not described as completely as it might be unless
the phases of the ξa's are given as well as their moduli.

When we do not take the limiting case of a large number of systems,
the di�erences between the Einstein-Bose assembly and independent assembly
are greater. To obtain the equations for the Einstein-Bose assembly from those for
the independent assembly we must apply a sort of quantization to the Schrödinger
function, i.e. we must replace the numbers composing the Schrödinger function by
observables satisfying de�nite commutability relations.

69. Application to Photons

In applications of the above theory it is convenient to take the q's to be constants
of the motion for an unperturbed system, so that the q(a)'s label the stationary

states of the unperturbed systems and the na's are the numbers of systems in
the stationary states. In the case of photons this means we must take the q's
to be the three Cartesian components of momentum together with a variable
specifying the polarization, which variable may be taken to be the direction of
the electric vector for a linearly polarized photon. The polarization variable will
now continually occur in our calculations along with the momentum. For brevity
this polarization variable will usually not be explicitly mentioned but will be
understood. Thus when we say a certain photon has a de�nite momentum, it is
to be understood that it has also a de�nite polarization, and the set of three
variables px, py, pz (which may be abridged to p) specifying this momentum
is to be understood as containing a fourth variable specifying the direction of
the electric vector. Again, when it is said that an integration is made over all
values of the variables px, py, pz, a summation over the two independent states of
polarization is implied as well.

We can apply the theory at the end of �67 to the interaction of a number of
photons with an atom, the atom being the perturber. The energy U for a photon
will consist of its proper energy hν together with its interaction energy with
the atom, V say. Hence

Uab = hνaδab + Vab,

νa being the frequency of a photon in the stationary state a. The Vab's,
like the Uab's, will be functions of the dynamical variables of the atom. The total
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Hamiltonian, given by (9) and (8), may now be written

H = HP +
∑
a, b

n½ae
iwaUab(nb + 1)½e−iwb

= HP +
∑
a

nahνa +
∑
a, b

n½ae
iwaVab(na + 1)½e−iwb (14)

= HP +HR +HQ,

HR being the total proper energy of the radiation and HQ the total
interaction energy.

Now photons have the peculiarity that they can be created and annihilated,
as happens whenever one of them is emitted or absorbed by an atom,
while our theory of the Einstein-Bose assembly has been built up on the basis
of the conservation of the total number of systems. We can, however, reconcile
our theory with this peculiarity of the photons by assuming a zero state for
the photons, in which they have no momentum and energy and are not physically in
evidence. We can now say that when a photon is absorbed or emitted, it jumps into
or out of this zero state respectively, and can in this way preserve the constancy of
the total number of photons. Since there is no limit to the number of photons that
may be emitted, we must assume the number in the zero state to be in�nite,
i.e. n0 = ∞. This makes the angle variable conjugate to n0 a constant of
the motion, since

i~
d

dt
eiw0 = eiw0H −Heiw0

= (eiw0n0 − n0e
iw0)(hν0 + V00)

+
[
eiw0n½0 − n

½
0e
iw0

]∑
b 6=0

eiw0V0b(nb + 1)½e−iwb

+
∑
a6=0

n½aVa0
[
eiw0(n0 + 1)½ − (n0 + 1)½eiw0

]
e−iw0

= 0,

since ν0 and V00 vanish and the quantities in square brackets [ ] are of order n−½0 .
In order that the Hamiltonian (14) may remain �nite when n0 is in�nite,

Va0 and V0a must be in�nitely small. We shall suppose that they are in�nitely
small in such a way that their products with n½0 are �nite and we shall put

Va0(n0 + 1)½e−iw0 = Va

V0an
½
0e
iw0 = Va,

}
(15)
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Va and Va being two new conjugate complex dynamical variables. We may count Va
and Va as functions only of the dynamical variables describing the atom, like Va0
and V0a, since the other factors on the left-hand sides of (15) are constants of
the motion (n0 being e�ectively constant since changes in n0 are small compared
with n0) and have no physical signi�cance. The interaction energy HQ in (14) may
now be written

HQ =
∑
a

{Van½aeiwa + Va(na + 1)½eiwa}+
∑
a, b

Vabn
½
ae
iwa(nb + 1)½e−iwb, (16)

the values a = 0, b = 0 being understood to be excluded from the summations here.
A photon has a continuous range of stationary states and not a discrete set,

since its components of momentum may have any values from −∞ to ∞.
We therefore have to change the sums in (16) into integrals. To do this accurately
would not be very easy, since it would mean dealing according to quantum
mechanics with a dynamical system with continuously many degrees of freedom,
which would require a new scheme of notation and a new mathematical technique.
We are, however, interested in the interaction energy (16) mainly with regard to
the limiting case of large n's, when classical mechanics may be assumed to apply
for the radiation, since we wish to compare the interaction energy in this case with
that provided by classical electromagnetic theory and thus obtain expressions for
the Va's and Vab's. In this limiting case the passage from sums to integrals is
quite easy.

Let σa denote the number of states of the photon (with a particular
polarization) per unit of momentum space about the momentum pa. We assume
σa to be large, but an arbitrary function of pa, and investigate the limit of (16)
when σa is made in�nite. The number of photons (with a particular polarization)
per unit of momentum space about the momentum pa is

ηa = naσa,

provided na varies in some roughly continuous way from one state to the next.
Let (p′|V |p′′) be the matrix* representing the interaction energy V for one photon
in the ordinary p-representation for that photon. This ordinary p-representation
di�ers from the one we have used up to the present in this chapter, in which V is
represented by Vab, only through the weight function. In the former representation
the weight attached to a small domain δpa of momentum space is just δpa, while in
the latter it is the number of discrete states in this domain, which is σaδpa.

*The matrix elements of this matrix are actually functions of the dynamical variables
describing the atom, like the Vab's, and not numbers, but this does not invalidate the argument.
The representation is an `incomplete' one, the representatives being de�ned in terms of those of
a complete one by equations like (10).
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The weight function is thus changed by a factor σa. The rule at the end of �24
now shows that the matrix elements in the two representations are connected by

(p(a)|V |p(b)) = Vab(σaσb)
½. (17)

Similarly the matrix elements (p′|V |0), (0|V |p′), referring to transitions into or out
of the zero state, are connected with Va and Va by

(p(a)|V |0) = Vaσ
½
a, (0|V |p(a)) = Vaσ

½
a.

We can now express the interaction energy (16) in the limiting case of large n's,
when the n's may be assumed to commute with the w's, in the form

HQ =
∑
a

{(p(a)|V |0)η½ae
iwa + (0|V |p(a))η½ae−iwa}σ−1a

+
∑
a, b

(p(a)|V |p(b))η½aη
½
be
i(wa−wb)σ−1a σ−1b

=

∫
{(p(a)|V |0)η½ae

iwa + (0|V |p(a))η½ae−iwa} dpa

+

∫∫
(p(a)|V |p(b))η½aη

½
be
i(wa−wb) dpa dpb (18)

in the limit σ → ∞. The fact that the σ's have disappeared from this result
justi�es our method of dealing with a continuous range of states as a limiting case
of a discrete set.

70. Determination of the Interaction Energy

between a Photon and Atom

We shall now determine the matrix elements (p(a)|V |0), (0|V |p(a)) and (p(a)|V |p(b))
by comparing (18) with the classical expression for the interaction energy between
an atom and a �eld of radiation. For simplicity we shall suppose the atom
to consist of a single electron moving in an electrostatic �eld of force. The �eld of
radiation may be described by the 4-vector potential, which is to a certain extent
arbitrary and may be chosen so that its time component vanishes. The �eld is
then completely described by the magnetic potential Ax, Ay, Az or A. The change
that the �eld causes in the Hamiltonian describing the atom is now, as explained
at the beginning of �48,

1

2m

{(
p +

e

c
A
)2
− p2

}
=

e

mc
(p,A) +

e2

2mc2
A2

=
e

c
(ẋ,A) +

e2

2mc2
A2. (19)
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This is the classical interaction energy, which is to be compared with (18). The A
that occurs here ought really to be the value of the magnetic potential at the
point where the electron is momentarily situated. It is, however, a good enough
approximation if we take this A to be the magnetic potential at some �xed point
in the atom, such as the nucleus, provided we are not dealing with radiation whose
wave-length is small compared with the dimensions of the atom.

To make the comparison between (18) and (19) we must �rst resolve the �eld
of radiation into plane progressive waves. The electric and magnetic �elds of
one of these waves, whose frequency is ν and whose direction is speci�ed by the
momentum p of the associated photons, are of the form

EEEp cos[(x,p)/~ + 2πνt+ γp], HHHp cos[(x,p)/~ + 2πνt+ γp],

the amplitudes EEEp and HHHp being vectors of equal length that are perpendicular to
the direction of motion and to each other. The total electric and magnetic �elds
are expressible as Fourier integrals of the form

EEE =

∫
EEEp cos[(x,p)/~ + 2πνt+ γp] dp ,

HHH =

∫
HHHp cos[(x,p)/~ + 2πνt+ γp] dp ,

EEEp, HHHp and γp being de�nite functions of the momentum p.
We must obtain the distribution of energy of this �eld over the various Fourier

components. At time t = 0 we have*∫
EEE 2dx=

∫∫
(EEEp,EEEp′) dp dp′

∫
cos[(x,p)/~ + γp] cos[(x,p′/~ + γp′)] dx

=

∫∫
(EEEp,EEEp′) dp dp′ · ½h3{cos(γp + γp′)δ(p+ p′) + cos(γp − γp′)δ(p− p′)},

the integration with respect to x here being similar to that with respect to q
performed in �35. Thus∫

EEE 2 dx = ½h3
∫
{(EEEp,EEE−p) cos(γp + γ−p) + EEE 2

p } dp .

Similarly ∫
HHH 2 dx = ½h3

∫
{(HHHp,HHH−p) cos(γp + γ−p) + HHH 2

p } dp .

*`·' replaces `.'
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On account of the connexion between the vectors EEEp and HHHp we have EEE 2
p = HHH 2

p

and also (EEEp,EEE−p) = −(HHHp,HHH−p). Hence the total energy is*

1/8π ·
∫

(EEE 2 + HHH 2) dx = h3/8π ·
∫

EEE 2
p dp ,

and the energy per unit of momentum space is h3/8π · EEE 2
p . This may be equated

to hνpηp, the η having the same meaning as in the preceding section. Thus

EEE 2
p = 8πh−2νpηp.

The vector potential A may be expressed as a Fourier integral in the same way
as EEE and HHH . We shall have

A = −
∫

Ap sin[(x,p)/~ + 2πνt+ γp] dp , (20)

the vector Ap being in the same direction as EEEp and having its length given by

A2
p =

(
c

2πνp

)2
EEE 2
p =

2c2

πh2νp
ηp. (21)

At the origin A will have the value

A = −
∫

Ap sin[2πνt+ γp] dp =

∫
Ap coswp dp ,

wp being an angle variable of the same nature as those occurring in (18). This value
for A substituted in expression (19) for the interaction energy gives

e/c ·
∫

(ẋ,Ap) coswp dp + e2/2mc2 ·
∫∫

(Ap,Ap′) coswp coswp′ dp dp′

=
e

h

(
2

π

)½∫
1

ν½p
ẋpη

½
p coswp dp +

e2

πmh2

∫∫
1

ν½pν
½
p′

cos θpp′η
½
pη

½
p′ coswp coswp′ dp dp′,

(22)

with the help of (21), where ẋp is the component of ẋ in the direction of Ap or EEEp
and θpp′ is the angle between the vectors Ap and Ap′ .

If we write (22) in terms of eiw and e−iw instead of cosw and compare it
with (18), we obtain

(p|V |0) = (0|V |p) =
e

h

1

(2πνp)½
ẋp

(p|V |p′) =
e2

2πmh2
1

ν½pν
½
p′

cos θpp′ .

 (23)
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We also �nd that there are certain terms in (22), namely those involving
exp i(wp + wp′) or exp−i(wp + wp′), which have no corresponding terms in (18).
This discrepancy shows the inadequacy of the assumption that the Hamiltonian
describing the interaction of an assembly of photons with an atom is of the form (9).
The extra terms in (22) would correspond to transitions in which two photons are
simultaneously absorbed or emitted and the possibility of such transitions requires
a more complicated interaction energy than that assumed in (9). The physical
e�ects of these terms are, however, small and unimportant, and so we shall
neglect them.

Equations (23) now give the interaction energy V between a single photon
and the atom. This interaction energy cannot conveniently be expressed explicitly
in terms of dynamical variables. We can get a complete representation of V by
introducing a Heisenberg representation for the variables describing the atom.
If the di�erent stationary states of the atom alone are denoted by α′, α′′, . . . ,
we shall have

(pα′|V |0α′′) = (0α′|V |pα′′) =
e

h

1

(2πνp)½
(α′|ẋp|α′′)

(p′α′|V |p′′α′′) =
e2

2πmh2
1

ν½p′ν
½
p′′

cos θp′p′′δα′α′′ .

 (24)

Each p here is, as before mentioned, to be understood as including not only
the three Cartesian components of momentum of the photon but also a polarization
variable specifying a direction of electric force. The matrix element (α′|ẋp|α′′) is
the component of the vector (α′|ẋ|α′′) in the direction of the electric force speci�ed
by p and similarly θp′p′′ is the angle between the directions of electric force speci�ed
by p′ and p′′.

71.Emission,Absorption andScattering ofRadiation

We can now determine directly the coe�cients of emission, absorption
and scattering of radiation by substituting in the formulae of Chapter X the values
for the matrix elements given by (24). For the case of emission we can use
formula (56) of Chapter X. This shows that for an atom in a state α′ the probability
per unit time per unit solid angle of its spontaneously emitting a photon and
dropping to a state α′′ of lower energy is

4π2

h

WP

c2

∣∣∣∣ eh 1

(2πν)½
(α′|ẋp|α′′)

∣∣∣∣2. (25)

Now the energy and momentum of a photon of frequency ν are

W = hν, P = hν/c.
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Again from the Heisenberg law (48) of Chapter VI

(α′|ẋp|α′′) = 2πiν(α′, α′′)(α′|xp|α′′),

ν(α′, α′′) being the frequency connected with transitions from state α′ to state α′′,
which in the present case is just the frequency ν of the emitted radiation.
These results substituted in (25) make the emission coe�cient reduce to

(2πν)3

hc3
|(α′|exp|α′′)|2. (26)

To obtain the rate of emission of energy per unit solid angle we must multiply this
by hν. If we now integrate over all solid angles, we shall obtain for the total rate
of emission of energy

4

3

(2πν)4

c3
|(α′|ex|α′′)|2. (27)

This is in agreement with expression (50) of Chapter VI and justi�es
Werner Heisenberg's assumption for the interpretation of his matrix elements.

In the same way the absorption coe�cient, given by formula (59) of Chapter X,
becomes for photons

4π2h2W

c2P

∣∣∣∣ eh 1

(2πν)½
(α′|ẋp|α′′)

∣∣∣∣2 =
8π3ν

c
|(α′|exp|α′′)|2.

This absorption coe�cient refers to an incident beam of one photon crossing unit
area per unit time per unit energy range. If we take one per unit frequency range
instead of energy range, as is usual when dealing with radiation, the absorption
coe�cient becomes

8π3ν

hc
|(α′|exp|α′′)|2.

This result is the same as (24) of �53, if we substitute for the Eν there the energy
hν of a single photon. Thus the elementary theory of �53, in which the radiation

�eld is treated as an external perturbation, gives the correct value for the absorption

coe�cient. The average absorption for all directions of motion and of polarization
of the incident beam is

8π3

3

ν

ch
|(α′|ex|α′′)|2,

which is just equal to the emission coe�cient (27) divided by the factor 8πhν3/c2.
This ratio for the absorption and emission coe�cients may be veri�ed by
elementary statistical arguments.

Let us now consider scattering. The true scattering coe�cient is given by
formula (38) of Chapter X. Such scattering of photons will not be accompanied by
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any change of state of the atom on account of the factor δα′α′′ in the expression for
the matrix element (p′α′|V |p′′α′′) in (24). Thus the �nal energy W ′ of the photon
will equal its initial energy W 0. The scattering coe�cient now reduces to�

e4/m2c4 · cos2 θp0p′ .

This is the same as that given by classical mechanics for the scattering of radiation
by a free electron. We thus see that the true scattering of radiation by an electron
in an atom is independent of the atom and is correctly given by the classical
theory. This result, it should be remembered, holds only provided the wave-length
of the radiation is large compared with the dimensions of the atom.

The true scattering is a mathematical concept and cannot be separated out
experimentally from the total scattering, given by formula (44) of Chapter X.
Let us see what this total scattering is in the case of photons. A modi�cation must
now be made in the application of formula (44) of Chapter X. The summation

∑
k

in this formula may be considered as representing the contribution to the scattering
of double transitions consisting of transitions �rstly from the initial state to
state k and secondly from state k to the �nal state. The �rst transition may be
an absorption of the incident photon and the second an emission of the required
scattered photon, but it is also possible for the �rst transition to be the emission
and the second the absorption. It is clear from the general nature of the method
used for deriving formula (44) of Chapter X that both these kinds of double
transitions must be included in the summation

∑
k when this formula is applied

to photons, although only the �rst of them was taken into account in the actual
derivation given in Chapter X.

For the double transition of absorption followed by emission we must take,
using zero, single prime and double prime to refer to the initial, �nal
and intermediate k state respectively,

(k|V |p0α0) = (0α′′|V |p0α0), (p′α′|V |k) = (p′α′|V |0α′′),
E − Ek = hν0 +HP (α0)−HP (α′′) = h[ν0 − ν(α′′, α0)],

where ν0 is the frequency of the incident photon and

hν(α′′, α0) = HP (α′′)−HP (α0).

Similarly for the double transition of emission followed by absorption we must take

(k|V |p0α0) = (p′α′′|V |0α0), (p′α′|V |k) = (0α′|V |p0α′′),
E − Ek = hν0 +HP (α0)−HP (α′′)− hν0 − hν ′ = − h[ν ′ + ν(α′′, α0)],

�`·' replaces `.'



71. Emission,Absorption andScattering ofRadiation 227

where ν ′ is the frequency of the scattered photon, there being now two photons,
of frequencies ν0 and ν ′, in existence for the intermediate state k. The expression
for the scattering coe�cient now reduces to

e4

h2c4
ν ′

ν0

∣∣∣∣∣ hm cos θ01δα0α′ +
∑
α′′

{
(α′|ẋ1|α′′)(α′′|ẋ0|α0)

ν0 − ν(α′′, α0)
− (α′|ẋ0|α′′)(α′′|ẋ1|α0)

ν ′ + ν(α′′, α0)

}∣∣∣∣∣
2

.

(28)
where x0 and x1 have been written for xp0 and xp′ , the components of x in
the directions of the electric vectors of the incident and scattered photons, and θ01
has been written for θp0p′ , the angle between these electric vectors. If we write (28)
in terms of x instead of ẋ, we get

(2πe)4

h2c4
ν ′

ν0

∣∣∣∣∣ ~
2πm

cos θ01δα0α′

−
∑
α′′

ν(α′, α′′)ν(α′′, α0)

{
(α′|x1|α′′)(α′′|x0|α0)

ν0 − ν(α′′, α0)
− (α′|x0|α′′)(α′′|x1|α0)

ν ′ + ν(α′′, α0)

}∣∣∣∣∣
2

.

(29)

We can simplify (29) with the help of the quantum conditions. We have

x1x0 − x1x0 = 0,

which gives ∑
α′′

{
(α′|x1|α′′)(α′′|x0|α0)− (α′|x0|α′′)(α′′|x1|α0)

}
= 0, (30)

and also�

x1ẋ0 − ẋ0x1 = 1/m · (x1p0 − p0x1) = i~/m · cos θ01,

which gives�∑
α′′

{
(α′|x1|α′′) · ν(α′′, α0)(α′′|x0|α0)− ν(α′, α′′)(α′|x0|α′′) · (α′′|x1|α0)

}
=

1

2πi
· i~
m

cos θ01δα0α′ =
~

2πm
cos θ01δα0α′ . (31)

Multiplying (30) by ν ′ and adding to (31), we obtain�∑
α′′

{
(α′|x1|α′′)(α′′|x0|α0)

[
ν ′ + ν(α′′, α0)

]
− (α′|x0|α′′)(α′′|x1|α0) [ν ′ + ν(α′, α′′)]

}
= ~/2πm · cos θ01δα0α′ .
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If we substitute this expression for� ~/2πm · cos θ01δα0α′′ in (29), we obtain,
after a straightforward reduction making use of identical relations between the ν's,

(2πe)4

h2c4
ν0ν ′

3

∣∣∣∣∣∑
α′′

{
(α′|x1|α′′)(α′′|x0|α0)

ν0 − ν(α′′, α0)
− (α′|x0|α′′)(α′′|x1|α0)

ν ′ + ν(α′′, α0)

}∣∣∣∣∣
2

. (32)

This gives the scattering coe�cient in the form of the e�ective area that a photon
has to hit per unit solid angle of scattering. It is known as the Kramers-Heisenberg

dispersion formula, having been �rst obtained by these authors from analogies with
the classical theory of dispersion.

The fact that the various terms in (29) can be combined to give
the result (32) justi�es the assumption made in deriving formula (44) of
Chapter X, that the matrix elements (p′α′|V |p′′α′′) of the interaction energy are of
the second order of smallness compared with the (p′α|V |k) ones, at any rate when
the scattered particles are photons.

72. Einstein's Laws of Radiation

In the preceding section we determined the probability coe�cients for absorption,
emission and scattering of a photon by an atom. We were there concerned
with only a single photon interacting with the atom (or at most with two),
the interaction energy being given by (24). To complete our theory of radiation
we require to know the laws governing the interaction of a number of photons
with the atom. If the atom is exposed to an incident beam of radiation containing
many photons, how do the absorption, emission and scattering probabilities depend
on the intensity of this beam?

This question cannot, of course, be answered simply from a consideration of
the interaction energy, de�ned by (24), for a single photon. We have to rely* on
the general interaction energy (16) for a number of photons, and this requires
incidentally that we must perform the passage from sums to integrals once again.
We make use of the general result (28) of �54, according to which a transition
probability is proportional to the square of the modulus of the matrix element of
the perturbing energy that refers to this transition.

Let us consider an absorption process in which the number of photons in state
a is reduced from na to na− 1, the atom simultaneously jumping from state α0 to
state α′. The probability of such a process will be proportional to the square of
the modulus of the matrix element

(n1n2 . . . na . . . α
0|HQ|n1n2 . . . na − 1 . . . α′)

�`·' replaces `.'
*`rely' replaces `fall back'
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of the total interaction energy HQ. The only term in the expression (16) for HQ

which can contribute to this matrix element is Van
½
ae
iwa. This matrix element

is thus proportional to n½a and the transition probability is proportional to na.
The passage from sums to integrals is now quite trivial, the �nal result being
that the probability of an absorption process is proportional to the intensity of
the incident radiation.

Similarly for an emission process, in which the number of photons in state a is
increased from na to na + 1, we must consider the matrix element

(n1n2 . . . na . . . α
0|HQ|n1n2 . . . na + 1 . . . α′).

The only term in expression (16) that contributes to this is Va(na + 1)½e−iwa.
This matrix element is thus proportional to (na+1)½ and the transition probability
to na + 1. In the same way a scattering process, in which the number of photons
in state a is decreased from na to na− 1 and that in state b is increased from nb to
nb + 1, is due to the term Vabn

½
ae
iwa(nb + 1)½e−iwb, if it is a true scattering process,

and to the product of the two terms Van
½
ae
iwa and V b(nb + 1)½e−iwb, if otherwise.

The scattering probability is thus in any case proportional to na(nb + 1).
To interpret these results we must now make an accurate passage from the discrete
to the continuous ranges of stationary states for the photons.

Suppose we have a distribution na of photons over the discrete states a.
To obtain the density of these photons (in ordinary space) we may
suppose them to be represented by a Schrödinger function (p(a)|) = n½a,
and transform this Schrödinger function to the (x, y, z)-representation by means
of the transformation function (x|p(a)). This transformation function must now
have the value

(x|p(a)) = h
− 3

2 ei(x,p
a)/~σ

− 1
2

a ,

di�ering from the value given by (36) of Chapter VI by the factor σ−½a , on account of
the weight function of our present p-representation di�ering from that of the usual
one by the factor σa, as was discussed in obtaining equation (17). Thus

(x|) =
∑
a

(x|p(a))(p(a)) = h
− 3

2
∑
a

ei(x,p
a)/~n

1
2
a σ
− 1

2
a .

Suppose na has the value unity for one state p and zero for all the others. We shall
then have

(x|) = h
− 3

2 ei(x,p)/~σ
− 1

2,

and the density of photons will be

|(x|)|2 = h−3σ−1.
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For an arbitrary distribution na of the photons over the discrete states a,
the photon density will be given by addition of the contributions from each state
and will therefore be

h−3
∑
a

naσ
−1
a = h−3

∫
na dpa.

Thus the number of photons per unit volume per unit of momentum space is h−3na,
corresponding to an energy h−2νana per unit volume per unit of momentum space.
The intensity per unit frequency range, equal to c times the energy density per
unit solid angle per unit frequency range, is therefore*

Ia = hν3a/c
2 · na.

The probability for an emission process, which we found was proportional to
na + 1, is thus proportional to Ia + hν3a/c

2. This means that with no incident
radiation there is still a certain amount of emission (which is, in fact, given by
expression (26)), but that the emission is increased or stimulated by incident
radiation in the same direction and having the same frequency (and state of
polarization) as the emitted radiation under consideration. Our present theory
of radiation thus completes the imperfect one of �53, and gives a ratio for
the stimulated and spontaneous emissions in agreement with Einstein's laws of
radiation discussed at the end of �53.

The probability for a scattering process from state a to state b, which we found
was proportional to na(nb+ 1), is in the same way proportional to Ia(Ib + hν3b /c

2).
Thus the scattering of radiation is also stimulated by incident radiation in
the same direction and having the same frequency as the scattered radiation.
The stimulation phenomenon is, in fact, a general one, as has been shown by
Albert Einstein and Paul Ehrenfest� from general statistical arguments.

*`·' replaces `.'
�Einstein, A., Ehrenfest, P. Zur Quantentheorie des Strahlungsgleichgewichts. Z. Physik 19,

301�306 (1923). https://doi.org/10.1007/BF01327565 See also Pauli, W. Über das thermische
Gleichgewicht zwischen Strahlung und freien Elektronen. Z. Physik 18, 272�286 (1923).
https://doi.org/10.1007/BF01327708



XIII. RELATIVITY THEORY OF

THE ELECTRON

73. Relativity Treatment of a Single Particle

Our theory of special dynamical systems from Chapter VI onwards was essentially
non-relativistic. We worked all the time with one particular Lorentz frame of
reference and did not make it an essential requirement of the theory that its results
should be independent of this frame. Let us now inquire into what sort of
modi�cations we may expect relativity to introduce.

It is fairly certain that the general theory of states and observables developed
in Chapters II�V will apply also to relativity treatments of dynamical systems.
We are faced with the problem, however, of deciding with what observables we shall
now work. There are serious disadvantages in taking these observables to be
the values, ξt say, of dynamical variables ξ at the time t. If the ξt's occur in
our analysis, they would have to appear on the same footing as the ξτ's, the values
of the ξ's at the time τ in some other Lorentz frame. We should therefore require
to know the relations between the ξt's and the ξτ's, and these would in general be
very complicated and arti�cial, as they would require us to connect distant parts of
space-time. In any case the ξt's are not quantities that could easily be observed and
we should not expect them to play any fundamental role in the theory. A possible
way out of the di�culty would be to build up a purely �eld theory and to take
as observables the values of the �eld quantities at de�nite points in space-time.
This appears to be the most straightforward way of dealing with general dynamical
systems on relativity lines, but it involves complicated mathematics and appears
to be too di�cult for practical application.�

The di�culty of a relativity treatment becomes much less severe when
one con�nes one's attention to the problem of a single particle moving in a given
�eld of force. If we now take a representation in which the observables xt, yt, zt

�See Heisenberg, W., Pauli, W. Zur Quantendynamik der Wellenfelder. Z. Physik 56, 1�61
(1929). https://doi.org/10.1007/BF01340129; Heisenberg, W., Pauli, W. Zur Quantentheorie
der Wellenfelder. II. Z. Physik 59, 168�190 (1930). https://doi.org/10.1007/BF01341423.
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specifying the position of the particle at time t are diagonal, we have as the wave
function representing a state a function (xt yt zt|) of the three variables xt, yt, zt
depending on the parameter t, which is the same as a function (xyzt|) of the four
variables x, y, z, t. The domain of our wave function thus becomes identical
with the ordinary space-time continuum, and this circumstance makes possible
an elementary treatment of the problem and allows us to use considerations
which cannot be extended to more general dynamical systems. We may expect,
for instance, the physical conditions at any point in space-time to depend only on
the value of the wave function at that point and neighbouring points, and thus
the wave function, if not actually invariant under a Lorentz transformation,
should transform according to simple laws.

Let us now see how we can bring the momentum of the particle into the theory.
The value of a component of momentum at a speci�ed time is an observable
of a rather arti�cial kind, even in the case of a system with a single particle,
and we should not expect it to play an important role. This observable,
we saw in �36, is connected with a certain space-displacement operator, which,
when it operates on any wave function, produces at the speci�ed time, just a spatial
displacement, the value of the new wave function at any other time being then
determined by the wave equation. It would seem more natural in a relativity
theory to deal with an operator which produces at all times simply a spatial
displacement of the wave function, such an operator being essentially a simple
partial di�erentiation of the type ∂/∂x of the wave function (xyzt|) in four
variables. The result of such an operator operating on a wave function is a new
wave function which in general does not satisfy the wave equation and hence
does not represent a state of the system, so that this operator is not an observable.
All the same we may expect the operator −ih∂/∂x to play the part of a momentum
in the theory, in spite of the fact that since it refers to momentum in general and not
momentum at a particular time, we can give no precise meaning to an observation
of it.

Thus we are led to introduce the operators

px = −i~ ∂
∂x
, py = −i~ ∂

∂y
, pz = −i~ ∂

∂z
, (1)

and also the corresponding

W = i~
∂

∂t
, (2)

referring to time displacement, to play the part of momentum and energy.
They can operate on any wave function, but since the result of such operation
does not satisfy the wave equation and does not represent a state, they are not
observables. All the same they may be used in algebraic analysis like observables
and will satisfy all the axioms of ordinary algebra except the commutative
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law of multiplication. The complete algebraic scheme of Chapter II will not,
however, apply, since we cannot interpret φαψ as a number when α is an operator of
this more general kind. It will be more convenient in the present chapter to regard
the symbols ψ, p, &c., not in the abstract sense of Chapter II, but as wave functions
and linear operators in the x, y, z & t representation.

74. The Wave Equation for the Electron

Let us consider �rst the case of the motion of an electron in the absence of
an electromagnetic �eld, so that the problem is simply that of the free particle,
which was discussed in �39. The Hamiltonian for this system provided by classical
mechanics is given by equation (1) of �39, and this leads to the wave equation (5)
of that section. This wave equation may be written{

W/c− (m2c2 + p2x + p2y + p2z)
½
}
ψ = 0, (3)

where W and the p's are to be interpreted as operators in accordance with
equations (1) and (2). Equation (3), although it takes into account correctly
the variation of the mass of the particle with its velocity, is yet unsatisfactory
from the point of view of relativity, because it is very unsymmetrical between W
and the p's, so much so that one cannot generalize it in a relativistic way to the case
when there is a �eld present. We must therefore look for a new wave equation for
the free particle.

If we multiply the wave equation (3) on the left by the operator
{W/c+ (m2c2 + p2x + p2y + p2z)

½}, we obtain the equation{
W 2/c2 −m2c2 − p2x − p2y − p2z

}
ψ = 0, (4)

which is of a relativistically invariant form and may therefore more conveniently
be taken as the basis of a relativity theory. Equation (4) is not completely
equivalent to equation (3) since, although every solution of (3) is also a solution
of (4), the converse is not true. Only those solutions of (4) belonging to positive
values for W are also solutions of (3).

The wave equation (4) is not in agreement with the general laws of the quantum
theory on account of its being quadratic in W . In �37 we deduced from quite
general arguments that the wave equation must be linear in the operator ∂/∂t
or W , like equation (43) of that section. We therefore seek a wave equation that is
linear in W and that is roughly equivalent to (4). In order that this wave equation
shall transform in a simple way under a Lorentz transformation, we try to arrange
that it shall be rational and linear in px, py and pz as well as in W , and thus of
the form

{W/c+ αxpx + αypy + αzpz + β}ψ = 0, (5)
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where the α's and β are independent of W and the p's. Since we are considering
the case of no �eld, all points in space-time must be equivalent, so that the operator
in the wave equation must not involve x, y, z or t. Thus the α's and β must also
be independent of x, y, z and t. They must therefore denote some quite new
dynamical variables, which may be pictured as describing some internal motion in
the electron. We shall see later that they just describe the spin of the electron.
The α's and β must, of course, commute with W and the p's and also with x, y,
z and t.

Multiplying (5) by the operator {W/c− αxpx − αypy − αxpx − β} on the left,
we obtain{

W 2/c2 −
∑
x, y, z

[
α2
xp

2
x + (αxαy + αyαx) pxpy + (αxβ + βαx) px

]
− β2

}
ψ = 0.

This is the same as (4) if the α's and β satisfy the relations

α2
x = 1, αxαy + αyαx = 0,

β2 = m2c2, αxβ + βαx = 0,

together with the relations obtained from these by permuting x, y and z. If we write

β = αmmc,

these relations may be summed up in the single one,

αµαν + αναµ = 2δµν , (µ, ν = x, y, z, or m). (6)

The four α's all anticommute with one another and the square of each is unity.
Thus by giving suitable properties to the α's and β we can make the wave

equation (5) equivalent to (4), in so far as the motion of the electron as a whole
is concerned. We may now assume (5) is the correct relativity wave equation
for the motion of an electron in the absence of a �eld. This gives rise to one
di�culty, however, owing to the fact that (5), like (4), is not exactly equivalent
to (3), but allows solutions corresponding to negative as well as positive values
of W . The former do not, of course, correspond to any actually observable
motion of an electron. For the present we shall simply evade the di�culty by
ignoring the negative-energy solutions. Their proper physical interpretation will
be discussed in �79.

We can easily obtain a representation of the four α's. They have similar
algebraic properties to the σ's introduced in �43 to describe the spin of an electron,
which σ's can be represented by matrices with two rows and columns. So long as
we keep to matrices with two rows and columns we cannot get a representation
of more than three anticommuting quantities, and we have to go to four rows and
columns to get a representation of the four anticommuting α's. It is convenient
�rst to express the α's in terms of the σ's and also of a second similar set
of three anticommuting observables whose squares are unity, ρ1, ρ2, ρ3 say,
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that are independent of and commute with the σ's. We may take, amongst other
possibilities,

αx = ρ1σx, αy = ρ1σy, αz = ρ1σz, αm = ρ3, (7)

and the α's will then satisfy all the relations (6), as may easily be veri�ed. If we
now take a representation with ρ3 and σz diagonal, we shall get the following
scheme of matrices:

σx =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, σy =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

, σz =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

,

ρ1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

, ρ2 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

, ρ3 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

.
Corresponding to the four rows and columns, the wave function must have four
components. We saw in �43 that the spin of the electron requires the wave function
to have two components. The fact that our present theory gives four is due to our
wave equation (5) having twice as many solutions as it ought to have, half of them
corresponding to states of negative energy.

With the help of (7), the wave equation (5) may be written in the vector form

{W/c+ ρ1(σ,p) + ρ3mc}ψ = 0.

To generalize this equation to the case when there is an electromagnetic
�eld present, we follow the classical rule of replacing W and p by W + eA0 and

�

p+e/c ·A, A0 and A being the scalar and vector potentials of the �eld at the place
where the electron is. This gives us the equation{

W

c
+
e

c
A0 + ρ1

(
σ,p +

e

c
A
)

+ ρ3mc

}
ψ = 0, (8)

which is the fundamental wave equation of the relativity theory of the electron.
The conjugate imaginary equation

φ

{
W

c
+
e

c
A0 + ρ1

(
σ,p +

e

c
A
)

+ ρ3mc

}
= 0 (9)

must be treated on the same footing as (8). The operators W and p in (9),
which operate to the left, must be interpreted, according to ��36 and 37, as having
the meanings in equations (1) and (2) with the signs reversed.

�`·' replaces `.'
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75. Invariance under a Lorentz Transformation

Before proceeding to discuss the physical consequences of the wave equation (8)
or (9), we shall �rst verify that our theory really is invariant under a Lorentz
transformation, or, stated more accurately, that the physical results the theory
leads to are independent of the Lorentz frame of reference used. This is not by any
means obvious from the form of the wave equation (8). We have to verify that,
if we write down the wave equation in a di�erent Lorentz frame, the solutions
of the new wave equation may be put into one-one correspondence with those
of the original one in such a way that corresponding solutions may be assumed
to represent the same state. For either Lorentz frame, the square of the modulus
of the wave function, summed for the four components, gives the probability
per unit volume of the electron being at any given place in that Lorentz frame.
This probability is of the nature of an electric density (and will be called the electric
density in future, for brevity), and its values, calculated in di�erent Lorentz
frames for wave functions representing the same state, should be connected like
the time components in these frames of some 4-vector. Further, the 4-dimensional
divergence of this 4-vector should vanish, signifying conservation of charge, or that
the electron cannot appear or disappear in any volume without passing through
the boundary.

For discussing Lorentz transformations it is convenient to make a slight change
in our notation. We shall use the su�xes 1, 2, 3 instead of x, y, z and shall put
p0 for W/c, and we shall also use the convention that terms containing a repeated
su�x are to be summed over the values 0 . . . 3 for that su�x. We can now write
equation (8) in the form*

{αµ(pµ + e/c · Aµ) + αmmc}ψ = 0, (10)

α0 being equal to unity, and similarly we can write equation (9) in the form*

φ{αµ(pµ + e/c · Aµ) + αmmc} = 0. (11)

We now apply a Lorentz transformation and denote quantities referring to
the new frame by a star. The components of the 4-vectors p and A will transform
according to a linear law of the type�

pµ = aµνp
∗
ν , Aµ = aµνA

∗
ν . (12)

Substituting these expressions for pµ and Aµ in equations (10) and (11), we obtain
*

{αµaµν(p∗ν + e/c · A∗ν) + αmmc}ψ = 0 (13)

and φ{αµaµν(p∗ν + e/c · A∗ν) + αmmc} = 0 (14)

We now try to bring these equations back to the form of the original (10) and (11)
by introducing a new wave function ψ∗, whose four components are linear functions

*`·' replaces `.'
�Original has a∗ν
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(with constant numerical coe�cients) of the four components of the original ψ.
This means that ψ∗ is connected with ψ by an equation of the type

ψ∗ = γψ, (15)

where γ is an operator, like the α's, which can be represented as a matrix with
four rows and columns. The conjugate imaginary equation to (15) is

φ∗ = φγ.

Equations (13) and (14) will go over into the equations*

γ{αν(p∗ν + e/c · A∗ν) + αmmc}ψ∗ = 0 (16)

and φ∗{αν(p∗ν + e/c · A∗ν) + αmmc}γ = 0 (17)

provided we can choose γ such that�

γαναµγ = aµν , γαmγ = αm. (18)

These equations (16) and (17) are of the same form as (10) and (11), as required,
since one can divide out by the extra factors γ and γ.

In order to verify that we can always choose γ to satisfy equations (18),
let us �rst take the special case when the change of our frame of reference
consists simply of a rotation through a hyperbolic angle θ in the xt plane, so that
the transformation equations for the components of a 4-vector are of the type

p0 = p∗0 cosh θ + p∗1 sinh θ,

p1 = p∗0 sinh θ + p∗1 cosh θ,

p2 = p∗2, p3 = p∗3.

 (19)

The values of the aµν may be written down at once from a comparison of
these equations with (12). With these values for the aµν it is easy to see that
equations (18) hold when we take

γ = e½θα1 = γ. (20)

We have, in fact, γα0γ = γγ = eθα1

= 1 + θα1 + θ2α2
1/2! + θ3α3

1/3! + · · · .
On account of α2

1 = 1, this reduces to

γα0γ = {1 + θ2/2! + · · · }+ α1{θ + θ3/3! + · · · }
= cosh θ + α1 sinh θ

= α0 cosh θ + α1 sinh θ.

Again, γα1γ = α1γγ = α0 sinh θ + α1 cosh θ.

Further, γα2γ = e½θα1α2e
½θα1 = e½θα1e−½θα1α2 = α2,

�Original has the su�x µ displaced incorrectly
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since α2 anticommutes with α1, which results in α2f(α1) = f(−α1)α2 for any
function f(α1) of α1. Similarly

γα3γ = α3, γαmγ = αm.

Thus the �ve equations (18) hold with γ given by (20) when the aµν are given
by (19).

As a second typical change of the frame of reference, we may consider a rotation
through an angle θ in ordinary space about the x-axis. The transformation
equations are now

p0 = p∗0, p1 = p∗1
p2 = p∗2 cos θ + p∗3 sin θ,

p3 = −p∗2 sin θ + p∗3 cos θ.

With the new values for the αµν we can easily verify that equations (18) hold with

γ = e−½θα2α3, γ = e−½θα3α2 = e½θα2α3,

the analysis being very similar to the preceding case.
If two changes of the frame of reference are made consecutively, we simply have

to multiply the corresponding γ's to get the γ for the resultant change. Now any
change of the frame of reference may be built up from two rotations of the types
we have considered, and hence there will always be a γ satisfying (18).

In this way we see that the solutions of the wave equation in the new frame of
reference, equation (16), can be put into a natural one-one correspondence with
those of the original wave equation (10), corresponding solutions being connected
by (15), and we may assume that corresponding solutions represent the same state.
It remains for us to verify that the electric density transforms like the time
component of a 4-vector and that the divergence of this 4-vector vanishes.

We shall introduce the notation φr.ψs to denote the sum of the product of
each of the four components of φr with the corresponding component of ψs.
In the same way φξ.ηψ, where ξ and η are any linear operators that can operate
on the wave functions, will denote the sum of the product of each component
of φξ with the corresponding component of ηψ. Our new symbols of the type
φξ.ηψ are functions of x, y, z and t, and are quite distinct from the products
φξηψ of Chapter II, which products, we have seen, have in general no meaning for
the more general type of linear operator with which we are now dealing. It should
be noted that

φ.αψ = φα.ψ (21)

when α is one of the α's in the wave equation, or more generally when it is any
operator which means simply taking four linear functions (whose coe�cients are
numbers or functions of x, y, z and t) of the four components of the wave function.

We can now express the electric density as φ.ψ, which is the same as φ.α0ψ or
φα0.ψ since α0 = 1. Let us see how the four quantities φ.αµψ, with µ = 0, . . . , 3,
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transform under a Lorentz transformation. We have, from (15) and (18),

φ∗.ανψ
∗ = φγ.ανγψ = φ.γανγψ

= φ.αµaµνψ = (φ.αµψ)aµν .

Comparing this result with (12), we see that the four quantities φ.αµψ transform
like the covariant components of a 4-vector. The contravariant components will be

φ.ψ, −φ.α1ψ, −φ.α2ψ, −φ.α3ψ.

This veri�es that our electric density φ.ψ is the time component of a 4-vector
and that the corresponding space components are −φ.αrψ (with r = 1, 2, 3).
These space components give the electric current, or, more accurately,
the probability of the electron crossing unit area per unit time.

The divergence of our 4-vector is∑
µ

± ∂

∂xµ
(φ.αµψ), (22)

where x0 denotes ct and the ± sign means that the + sign is to be taken for
µ = 0 and the− sign for µ = 1, 2, 3 before one does the summation. To prove this
divergence vanishes, multiply equation (10) by φ and (11) by ψ, taking the sum
over the four components in each case, and subtract. The result is

φ.αµpµψ − φαµpµ.ψ = 0,

the other terms cancelling on account of (21). With the help of (1) and (2)
this gives ∑

µ

±
{
φ.αµ

∂ψ

∂xµ
+

∂φ

∂xµ
αµ.ψ

}
= 0,

which just expresses the vanishing of (22). In this way we complete the proof that
our theory gives consistent results in whichever frame of reference it is applied.

76. Existence of the Spin

In �74 we saw that the correct wave equation for the electron in the absence
of an electromagnetic �eld, namely equation (5), is equivalent to the wave
equation (4) which is suggested from analogy with the classical theory.
This equivalence no longer holds when there is a �eld. By treating the correct
wave equation for this case, namely (8), in the same way as we treated (5) and
comparing it with the wave equation to be expected from analogy with the classical
theory, namely {(

W

c
+
e

c
A0

)2
−
(
p +

e

c
A

)2
−m2c2

}
ψ = 0, (23)
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in which the operator is just the classical relativity Hamiltonian, we may expect
to get an indication of the new physical features of the present theory.

We must multiply (8) by some factor on the left to make it resemble (23) as
closely as possible. Taking this factor to be

W

c
+
e

c
A0 − ρ1

(
σ, p +

e

c
A
)
− ρ3mc,

we get{(
W

c
+
e

c
A0

)2
−
(
σ, p +

e

c
A

)2
−m2c2

+ρ1

[(
W

c
+
e

c
A0

)(
σ, p +

e

c
A

)
−
(
σ, p +

e

c
A

)(
W

c
+
e

c
A0

)]}
ψ = 0.

(24)

We now use the general formula, that, ifB andC are any two vectors that commute
with σ,

(σ, B)(σ, C) =
∑
xyz

{
σ2
xBxCx + σxσyBxCy + σyσxByCx

}
= (B, C) + i

∑
xyz

σz(BxCy −ByCx)

= (B, C) + i(σ, B×C) (25)

Taking* B = C = p + e/c ·A, we �nd, since(
p +

e

c
A
)
×
(
p +

e

c
A
)

=
e

c
{p×A + A× p}

= −i~e/c · curlA = −i~e/c ·HHH ,

where HHH is the magnetic �eld, that(
σ, p +

e

c
A
)2

=
(
p +

e

c
A
)2

+
~e
c

(σ, HHH ).

Also we have(
W

c
+
e

c
A0

)(
σ, p +

e

c
A

)
−
(
σ, p +

e

c
A

)(
W

c
+
e

c
A0

)
=
e

c

(
σ,
W

c
A−A

W

c
+ A0p− pA0

)
=
i~e
c

(
σ,

1

c

∂A

∂t
+ gradA0

)
= −i~e

c
(σ, EEE )

where EEE is the electric �eld. Thus (24) becomes{(
W

c
+
e

c
A0

)2
−
(
p +

e

c
A

)2
−m2c2 − ~e

c
(σ, HHH )− iρ1

~e
c

(σ, EEE )

}
ψ = 0.

*`·' replaces `.'
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This equation di�ers from (23) through having two extra terms in the operator.
The electron according to the present theory is more closely analogous to a classical
system with the Hamiltonian function(

W

c
+
e

c
A0

)2
−
(
p +

e

c
A

)2
−m2c2 − ~e

c
(σ, HHH )− iρ1

~e
c

(σ, EEE ).

If we neglect relativity corrections, so that we can put W = mc2 + W1 and count
W1 as small, this Hamiltonian reduces, after division throughout by 2m, to

W1 −
{
−eA0 +

1

2m

(
p +

e

c
A
)2

+
~e

2mc
(σ, HHH ) + iρ1

~e
2mc

(σ, EEE )

}
.

We can now see that the two extra terms may he considered approximately as due
to the electron possessing an additional potential energy of amount

~e
2mc

(σ, HHH ) + iρ1
~e

2mc
(σ, EEE ),

which may he interpreted as arising from the electron having a magnetic moment*

−~e/2mc · σ and an electric moment −iρ1~e/2mc · σ. This magnetic moment is
in agreement with the assumptions of �43 and is what is required by experiment.
The electric moment, on the other hand, is an imaginary� quantity and thus cannot
be considered as having a physical meaning. The Hamiltonian of our original wave
equation (8) is real, and the imaginary term has appeared only on account of our
having performed a rather arti�cial operation to get a Hamiltonian that can be
compared with the classical one.

The spin angular momentum does not give rise to any potential energy and
therefore does not appear in the result of the preceding calculation. The simplest
way of showing the existence of the spin angular momentum is to take the case
of the motion of an electron in a central �eld of force and determine the angular
momentum integrals. We therefore take A = 0 and A0 a function of r only, so that
the wave equation (8) becomes

(W −H)ψ = 0,

where H = −eA0(r)− cρ1(σ, p)− ρ3mc2. (26)

This H is the Hamiltonian to be used in the equations of motion.
If we take the x-component of orbital angular momentum, mx = ypz − zpy,

we �nd for its rate of change, with the help of commutability relations proved in
��44 and 45,

i~ṁx = mxH −Hmx

= −cρ1{mx(σ, p)− (σ, p)mx}
= −cρ1(σ,mxp− pmx)

= −i~cρ1{σypz − σzpy}.
�`pure' is redundant
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Thus ṁx 6= 0 and the orbital angular moinentum is not a constant of the motion.
We have further

i~σ̇x = σxH −Hσx
= −cρ1{σx(σ, p)− (σ,p)σx}
= −cρ1(σxσ − σσx, p)

= −2icρ1{σzpy − σypz}

with the help of equations (42) of �43. Hence

i~(ṁx + ½~σ̇x) = 0,

so that the vectorm+½~σ is a constant of the motion. This result one can interpret
by saying the electron has a spin angular momentum ½~σ, which must be added
to the orbital angular momentum m before one gets a constant of the motion.

77. Transition to Polar Variables

For the further study of the motion of an electron in a central �eld of force, it is
convenient to make a transformation to polar coordinates, as was done in �45 in
the non-relativity case. We can introduce r and pr as before, but instead of k,
the magnitude of the orbital angular momentum m, which is no longer a constant
of the motion, we must now use the magnitude of the total angular momentum
M = m + ½~σ. If j is this magnitude expressed in units of ~, we shall have

j2~2 = M2
x +M2

y +M2
z + ¼~2. (27)

The eigenvalues of mz are integral multiples of ~, those of ½~σz are ±½~, and hence
those of Mz must be half-odd integral multiples of ~. It follows from the general
result of �30 that the eigenvalues of j must be integers greater than zero.

If in formula (25) we take B = C = m, we get

(σ,m)2 = m2 + i(σ,m×m)

= m2 − ~(σ,m)

= (m + 1
2
~σ)2 − 2~(σ,m)− 3

4
~2.

Hence {(σ,m) + ~}2 = M2 + 1
4
~2.

Thus (σ,m) +~ is a quantity whose square is M2 + ¼~2 and we could, consistently
with equation (27), de�ne j~ as (σ,m)+~ instead of as the positive square root of
M2+¼~2. This would not be convenient, however, since we want j to be a constant
of the motion and (σ,m) + ~ is not constant. We have, in fact, from applications
of (25),
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(σ,m)(σ,p) = i(σ,m× p)

and (σ,p)(σ,m) = i(σ,p×m),

so that*

(σ,m)(σ,p) + (σ,p)(σ,m) = i
∑
xyz

σx{mypz −mzpy + pymz − pzmy}

= i
∑
xyz

σx · 2i~px = −2~(σ,p),

or {(σ,m) + ~}(σ,p) + (σ,p){(σ,m) + ~} = 0.

Thus (σ,m) + ~ anticommutes with one of the terms in the expression (26)
for H, namely the term −cρ1(σ,p), and commutes with the other two. It follows
that ρ3{(σ,m) + ~} commutes with all the three terms in H and is a constant
of the motion. But the square of ρ3{(σ,m) + ~} is also M2 + ¼~2. We can
therefore take

j~ = ρ3{(σ,m) + ~}, (28)

which gives us a convenient rational de�nition for j which is consistent with (27)
and makes j a constant of the motion. The eigenvalues of this j are all positive
and negative integers, excluding zero.

By a further application of (25), we get

(σ,x)(σ,p) = (x,p) + i(σ,m)

= rpr + iρ3j~, (29)

with the help of (28) and also of equation (13) of Chapter VIII. We introduce
the observable ε de�ned by

rε = ρ1(σ, m). (30)
Since r commutes with ρ1, and with (σ, m), it must commute with ε. We thus have

r2ε2 = [ρ1(σ, x)]2 = (σ, x)2 = x2 = r2,

or ε2 = 1.

Since there is symmetry between x and p so far as angular momentum is concerned,
ρ1(σ,x), like ρ1(σ,p), must commute with M and j. Hence ε commutes with M
and j. Further, ε must commute with pr, since we have

(σ,m)(x,p)− (x,p)(σ,x) = (σ, x(x, p)− (x, p)x) = i~(σ,x).

which gives rε(rpr + i~)− (rpr + i~)rε = i~rε
or rε(pr + 2i~)− (rpr + i~)rε = i~rε,
which reduces to εpr − prε = 0.

*`·' replaces `.'
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From (29) and (30) we obtain

rερ1(σ,p) = rpr + iρ3j~
or ρ1(σ,p) = εpr + iερ3j~/r.
Thus H/c = −e/c · A0 − εpr − iεj~/r − ρ3mc.
This gives our Hamiltonian expressed in terms of polar variables. It should be
noticed that ε and ρ3 commute with all the other variables occurring in H and
anticommute with one another. This means that we can take a representation in
which ε and ρ3 are represented respectively by the matrices(

0 −i
i 0

)
,

(
1 0
0 −1

)
(31)

and in which r, say, is diagonal, and the wave function (r|) will then have
two components, (r|)a and (r|)b, say, referring to the two rows and columns of
the matrices.

78. The Fine-Structure of the Energy-Levels of

Hydrogen

We shall now take the case of the hydrogen atom, for which A0 = e/r, and work out
its energy-levels, given by the eigenvalues H ′ of H. The equation (H ′ −H)ψ = 0
which de�nes these eigenvalues, when written in terms of representatives in
the representation discussed above with ε and ρ3 represented by the matrices (31),
gives the equations(

H ′

c
+
e2

cr

)
(r|)a − ~

∂

∂r
(r|)b −

j~
r

(r|)b +mc (r|)a = 0(
H ′

c
+
e2

cr

)
(r|)b − ~

∂

∂r
(r|)a −

j~
r

(r|)a +mc (r|)b = 0.

If we put
~

mc+H ′/c
= a1,

~
mc−H ′/c

= a2, (32)

these equations reduce to(
1

a1
+
α

r

)
(r|)a −

(
∂

∂r
+
j

r

)
(r|)b = 0(

− 1

a2
+
α

r

)
(r|)b +

(
∂

∂r
− j

r

)
(r|)a = 0,

 (33)

where α = e2/~c, which is a small number. We shall solve these equations by
a similar method to that used for equation (20) in �46.
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Put
(r|)a = e−r/af, (r|)b = e−r/ag,

introducing two new functions, f and g, of r, where

a = (a1a2)
½ = ~(m2c2 −H ′2/c2)−½. (34)

Equations (33) become(
1

a1
+
α

r

)
f −

(
∂

∂r
− 1

a
+
j

r

)
g = 0,(

− 1

a2
+
α

r

)
g +

(
∂

∂r
− 1

a
− j

r

)
f = 0.

 (35)

We now try for a solution in which f and g are in the form of power series,

f =
∑
s

csr
s, g =

∑
s

c′sr
s, (36)

in which consecutive values of s di�er by unity though these values need not
be integers. Substituting these expressions for f and g in (35) and picking out
coe�cients of rs−1, we obtain

cs−1/a1 + αcs − (s+ j)c′s + c′s−1/a = 0,

−c′s−1/a2 + αc′s + (s− j)c′s − cs−1/a = 0,

}
(37)

By multiplying the �rst of these equations by a and the second by a2 and adding,
we can eliminate both cs−1 and c

′
s−1, since from (34) a/a1 = a2/a. This gives

cs[aα + a2(s− j)] + c′s[a2α− a(s+ j)] = 0, (38)

a relation which shows the connexion between the primed and unprimed c's.
The boundary condition at r = 0 requires that the series (36) shall terminate

on the side of small s. If s0 is the minimum value of s for which cs and c
′
s do not

both vanish, we obtain from (37), by putting s = s0 and cs0−1 = c′s0−1 = 0,

αcs0 − (s0 + j)c′s0 = 0,

αc′s0 + (s0 − j)cs0 = 0,

which give α2 = −s20 + j2.

Since the boundary condition requires that the minimum value of s shall be greater
than zero, we must take

s0 = +
√
j2 − α2.
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To investigate the convergence of the series (36) we shall determine the ratio
cs/cs−1 for large s. Equation (38) and the second of equations (37) give
approximately, when s is large,

csa2 = c′sa

and scs = cs−1/a+ c′s−1/a2.

Hence cs/cs−1 = 2/as.

The series (36) will therefore converge like∑
s

1

s!

(
2r

a

)s
or e2r/a. This result is similar to that obtained in �46 and allows us to infer,
as before, that all values of H ′ are permissible for which a is* imaginary,
i.e. for which, from (34), H ′ > mc2, but of those values of H ′ for which a is real,
only those are permissible for which the series (36) terminate on the side of large s.

If the series (36) terminate with the terms cs and c
′
s, so that cs+1 = c′s+1 = 0,

we obtain from (37) with s+ 1 substituted for s

cs/a1 + c′s/a = 0,

−c′s/a2 − cs/a = 0.

These two equations are equivalent on account of (34). When combined with (38),
they give

a1[aα + a2(s− j)] = a[a2α− a(s+ j)],

which reduces to 2a1a2s = a(a2 − a1)α
or s

a
= ½

(
1

a1
− 1

a2

)
α =

H ′

c~
α,

with the help of (32). Squaring and using (34), we obtain

s2(m2c2 −H ′2/c2) = α2H ′
2
/c2.

Hence H ′

mc2
=

(
1 +

α2

s2

)−½
The s here, which speci�es the last term in the series, must be greater than s0 by
some integer not less than zero. Calling this integer n, we have

s = n+
√
j2 − α2

and thus H ′

mc2
=

{
1 +

α2

(n+
√
j2 − α2)2

}−½
.

This formula gives the discrete energy-levels of the hydrogen spectrum and
was �rst obtained by Sommerfeld working with Bohr's orbit theory. There are two

*`pure' is redundant
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quantum numbers n and j involved, but owing to α2 being very small the energy
depends almost entirely on n + |j|. Values of n and |j| that give the same
n+ |j| give rise to a set of energy-levels lying very closely to one another, and to
the energy-level given by the non-relativistic formula (27) of �46 with s = n+ |j|.

For a general value of n, j can have any integral value except zero. The value
n = 0 is, however, exceptional as it makes equation (38) vanish identically. A closer
investigation shows that in this case only negative values for j are allowed.�

79. Physical Meaning of the Negative-Energy

Solutions

It has been mentioned before that the wave equation for the electron admits of
twice as many solutions as it ought to, half of them referring to states with negative
values for the kinetic energy W + eA0. This di�culty was introduced as soon as
we passed from equation (3) to equation (4) and is inherent in any relativity theory.
It occurs also in classical relativity theory, but is not then serious since, owing to
the continuity in the variation of all classical dynamical variables, if the kinetic
energy W + eA0, is initially positive (when it must be greater than or equal to
mc2), it cannot subsequently be negative (when it would have to be less than or
equal to −mc2). In the quantum theory, however, discontinuous transitions may
take place, so that if the electron is initially in a state of positive kinetic energy
it may make a transition to a state of negative kinetic energy. It is therefore no
longer permissible simply to ignore the negative-energy states, as one can do in
the classical theory.

Let us examine the negative-energy solutions of the equation{(
W

c
+
e

c
A0

)
+ αx

(
px +

e

c
Ax

)
+ αy

(
py +

e

c
Ay

)
+ αz

(
pz +

e

c
Az

)
+ αmmc

}
ψ= 0

(39)
a little more closely. For this purpose it is convenient to use a representation of
the α's in which all the elements of the matrices representing αx, αy and αz are real
and all those of the matrix representing αm are� imaginary. Such a representation
may be obtained, for instance, from that of �74 by interchanging the expressions for
αy and αm in (7). With such a representation, if we write −i for i in the operator

�Gordon, W. Die Energieniveaus des Wassersto�atoms nach der Diracschen Quantentheorie
des Elektrons. Z. Physik 48, 11�14 (1928). https://doi.org/10.1007/BF01351570

�`pure' is redundant
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of equation (39), we get, remembering (1) and (2),¶{(
e

c
A0 −

W

c

)
+ αx

(e
c
Ax − px

)
+ αy

(e
c
Ay − py

)
+ αz

(e
c
Az − pz

)
− αmmc

}
ψ= 0

(40)
Thus the conjugate complex of any wave function that is a solution of (39) is
a solution of (40). Further, if the solution of (39) belongs to a negative value for
W + eA0, the conjugate complex solution of (40) will belong to a positive value
for W − eA0. But equation (40) is just what one would get if one substituted
−e for e in (39). It follows that the conjugate complex of any solution of (39)
belonging to a negative value for W + eA0 is a solution, belonging to a positive
value for W − eA0, of the wave equation obtained from (39) by substitution of
−e for e, and therefore represents an electron of charge +e, instead of −e, moving
through the given electromagnetic �eld. Thus the unwanted solutions of (39) are
connected with the motion of an electron with a charge +e. (It is not possible,
of course, with an arbitrary electromagnetic �eld, to separate the solutions of (39)
de�nitely into those referring to positive and those referring to negative values
for W + eA0, as such a separation would imply that transitions from one kind to
the other do not occur. The preceding discussion is therefore only a rough one,
applying to the case when such a separation is approximately possible.)

In this way we are led to infer that the negative-energy solutions of (39) refer
to the motion of protons or hydrogen nuclei, although there remains the di�culty
of the great di�erence in the masses. We cannot, however, simply assert that
the negative-energy solutions represent protons, as this would make the dynamical
relations all wrong. For instance, it is certainly not true that a proton has
a negative kinetic energy. We must therefore establish the protons on a somewhat
di�erent footing. We assume that nearly all the negative-energy states are

occupied, with one electron in each state in accordance with the exclusion principle
of Wolfgang Pauli. An unoccupied negative-energy state will now appear as
something with a positive energy, since to make it disappear, i.e. to �ll it up,
we should have to add to it an electron with negative energy. We assume that
these unoccupied negative-energy states are the protons.

These assumptions require there to be a distribution of electrons of in�nite
density everywhere in the world. A perfect vacuum is a region where all the states
of positive energy are unoccupied and all those of negative energy are occupied.
In a perfect vacuum Maxwell's equation

divEEE = 0

must, of course, be valid. This means that the in�nite distribution of
negative-energy electrons does not contribute to the electric �eld. Only departures

¶The original's bracketed pairs of terms are swapped in order but the commutative law of
addition always applies.
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from the distribution in a vacuum will contribute to the electric density ρ in
Maxwell's equation

divEEE = −4πρ.
Thus there will be a contribution −e for each occupied state of positive energy
and a contribution +e for each unoccupied state of negative energy.

The exclusion principle will operate to prevent a positive-energy electron
ordinarily from making transitions to states of negative energy. It will still
be possible, however, for such an electron to drop into an unoccupied state of
negative energy. In this case we should have an electron and proton disappearing
simultaneously, their energy being emitted in the form of radiation. Such processes
probably actually occur in nature.

The present theory is very symmetrical between the electrons and protons.
The symmetry is not mathematically perfect, as may easily be veri�ed,
when one takes interaction between the electrons into account. This cause,
however, hardly appears to be su�cient, according to present ideas, to account
for the very considerable observed di�erences between electrons and protons,
in particular their di�erent masses. Possibly the solution of this di�culty will
be found in a better understanding of the nature of interaction.
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